Loading…
Fabrication of novel porous anodic alumina membranes by two-step hard anodization
Porous anodic alumina (PAA) membranes with highly ordered hexagonal cells and a novel pore structure have been fabricated by two-step hard anodization in a H(2)SO(4)-Al(2)(SO(4))(3)-H(2)O system at 40 and 50 V, giving average cell diameters of 77 and 96 nm, respectively. There are several tiny pores...
Saved in:
Published in: | Nanotechnology 2008-06, Vol.19 (22), p.225604-225604 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Porous anodic alumina (PAA) membranes with highly ordered hexagonal cells and a novel pore structure have been fabricated by two-step hard anodization in a H(2)SO(4)-Al(2)(SO(4))(3)-H(2)O system at 40 and 50 V, giving average cell diameters of 77 and 96 nm, respectively. There are several tiny pores embedded in each big shallow pore on the top of the membranes, and there is only one pore in one cell at their bottom. The cells on both sides of the membranes present almost the same periodic arrangement. In order to explore the formation of the novel pore structure, PAA membranes fabricated at different current densities (30-200 mA cm(-2)) are obtained by maintaining a constant voltage at 40 V. The experimental results show that the interpore distance is not only dependent on the anodization voltage, but is also influenced by the current density, which means that the pore structure of PAA membranes fabricated by hard anodization can be accurately designed and controlled by adjusting the anodization voltage and current density simultaneously. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/19/22/225604 |