Loading…

Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography

We report sub-diffraction limited patterning of Si substrate surfaces by laser-initiated liquid-assisted colloidal lithography. The technique involves exposing a two-dimensional lattice of transparent colloidal particles spin coated on the substrate of interest (here Si) immersed in a liquid (e.g. m...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2015-11, Vol.26 (45), p.455303-455303
Main Authors: Ulmeanu, M, Petkov, P, Ursescu, D, Maraloiu, V A, Jipa, F, Brousseau, E, Ashfold, M N R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report sub-diffraction limited patterning of Si substrate surfaces by laser-initiated liquid-assisted colloidal lithography. The technique involves exposing a two-dimensional lattice of transparent colloidal particles spin coated on the substrate of interest (here Si) immersed in a liquid (e.g. methanol, acetone, carbon tetrachloride, toluene) to a single picosecond pulse of ultraviolet laser radiation. Surface patterns formed using colloidal particles with different radii in the range 195 nm ≤ R ≤ 1.5 m and liquids with differing indices of refraction (nliquid) are demonstrated, the detailed topographies of which are sensitively dependent upon whether the index of refraction of the colloidal particle (ncolloid) is greater or smaller than nliquid (i.e. upon whether the incident light converges or diverges upon interaction with the particle). The spatial intensity modulation formed by diffraction of the single laser pulse by the colloidal particles is imprinted into the Si substrate.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/26/45/455303