Loading…
Plasmonic lithography for fabricating nanoimprint masters with multi-scale patterns
We successfully demonstrate the practical application of plasmonic lithography to fabricate nanoimprint masters. Using the properties of a non-propagating near-field, we achieve high-speed multi-scale patterning with different exposure time during the scanning. We modulate the width of the line patt...
Saved in:
Published in: | Journal of micromechanics and microengineering 2015-05, Vol.25 (5), p.55004-7 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We successfully demonstrate the practical application of plasmonic lithography to fabricate nanoimprint masters. Using the properties of a non-propagating near-field, we achieve high-speed multi-scale patterning with different exposure time during the scanning. We modulate the width of the line patterns using a pulse light source with different duty cycles during the scanning of the probe. For practical application in plasmonic lithography, we apply a deep reactive ion etching process to transfer an arbitrary fluidic channel into a silicon substrate and fabricate a high-aspect-ratio imprint master. Subsequently, we carry out the imprint process to replicate the fluidic channel with an aspect ratio of 7.2. For pattern width below 100 nm, we adopt a three-layer structure of photoresist, hard layer, and polymer to record the near field and form a hard mask and transfer mask. Using the multilayer structure, we fabricate high-resolution nanoimprint masters in a silicon substrate with an aspect ratio greater than 1. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/25/5/055004 |