Loading…
A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators
A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4′-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake a...
Saved in:
Published in: | Smart materials and structures 2012-05, Vol.21 (5), p.55015-1-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4′-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and consequently generates a high intrinsic strain response, which is >1.1% under 1.6 V while maintaining a high elastic modulus (i.e. 600 MPa for 65 vol% IL uptake). Moreover, such a high modulus of the active ionomer, originating from the highly aromatic backbone and side-chain-free structure, allows for the fabrication of free-standing thin film micro-actuators (down to 5 µm thickness) via the solution cast method and focused-ion-beam milling, which exhibits a much higher bending actuation, i.e. 43 µm tip displacement and 180 kPa blocking stress for a 200 µm long and 5 µm thick cantilever actuator, compared with the ionic actuators based on traditional ionomers such as Nafion, which has a much lower elastic modulus (50 MPa) and actuation strain. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/21/5/055015 |