Loading…

Seismic vulnerability assessment of a steel-girder highway bridge equipped with different SMA wire-based smart elastomeric isolators

Shape memory alloy wire-based rubber bearings (SMA-RBs) possess enhanced energy dissipation capacity and self-centering property compared to conventional RBs. The performance of different types of SMA-RBs with different wire configurations has been studied in detail. However, their reliability in is...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2016-07, Vol.25 (7), p.75039-75054
Main Authors: Dezfuli, Farshad Hedayati, Alam, M Shahria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Shape memory alloy wire-based rubber bearings (SMA-RBs) possess enhanced energy dissipation capacity and self-centering property compared to conventional RBs. The performance of different types of SMA-RBs with different wire configurations has been studied in detail. However, their reliability in isolating structures has not been thoroughly investigated. The objective of this study is to analytically explore the effect of SMA-RBs on the seismic fragility of a highway bridge. Steel-reinforced elastomeric isolators are equipped with SMA wires and used to isolate the bridge. Results revealed that SMA wires with a superelastic behavior and re-centering capability can increase the reliability of the bearing and the bridge structure. It was observed that at the collapse level of damage, the bridge isolated by SMA-HDRB has the lowest fragility. Findings also showed that equipping NRB with SMA wires decreases the possibility of damage in the bridge while, replacing HDRB with SMA-HDRB; or LRB with SMA-LRB increases the failure probability of the system at slight, moderate, and extensive limit states.
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/25/7/075039