Loading…

Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis

Multiscale entropy (MSE) analysis provides information about complexity on various time scales. The aim of this study was to test whether MSE is able to detect autonomic dysregulation in young patients with diabetes mellitus (DM). We analyzed heart rate (HR) oscillations, systolic (SBP) and diastoli...

Full description

Saved in:
Bibliographic Details
Published in:Physiological measurement 2008-07, Vol.29 (7), p.817-828
Main Authors: Trunkvalterova, Z, Javorka, M, Tonhajzerova, I, Javorkova, J, Lazarova, Z, Javorka, K, Baumert, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiscale entropy (MSE) analysis provides information about complexity on various time scales. The aim of this study was to test whether MSE is able to detect autonomic dysregulation in young patients with diabetes mellitus (DM). We analyzed heart rate (HR) oscillations, systolic (SBP) and diastolic blood pressure (DBP) signals in 14 patients with DM type 1 and 14 age- and sex-matched healthy controls. SampEn values (scales 1-10) and linear measures were computed. HR: among the linear measures of heart rate variability significant differences between groups were only found for RMSSD (p = 0.043). MSE was significantly reduced on scales 2 and 3 in DM (p = 0.023 and 0.010, respectively). SBP and DBP: no significant differences were detected with linear measures. In contrast, MSE analysis revealed significantly lower SampEn values in DM on scale 3 (p = 0.039 for SBP; p = 0.015 for DBP). No significant correlations were found between MSE and linear measures. In conclusion, MSE analysis of HR, SBP and DBP oscillations is able to detect subtle abnormalities in cardiovascular control in young patients with DM and is independent of standard linear measures.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/29/7/010