Loading…

GSpyNetTree: a signal-vs-glitch classifier for gravitational-wave event candidates

Despite achieving sensitivities capable of detecting the extremely small amplitude of gravitational waves (GWs), LIGO and Virgo detector data contain frequent bursts of non-Gaussian transient noise, commonly known as ‘glitches’. Glitches come in various time-frequency morphologies, and they are part...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2024-04, Vol.41 (8), p.85007
Main Authors: Álvarez-López, Sofía, Liyanage, Annudesh, Ding, Julian, Ng, Raymond, McIver, Jess
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite achieving sensitivities capable of detecting the extremely small amplitude of gravitational waves (GWs), LIGO and Virgo detector data contain frequent bursts of non-Gaussian transient noise, commonly known as ‘glitches’. Glitches come in various time-frequency morphologies, and they are particularly challenging when they mimic the form of real GWs. Given the higher expected event rate in the next observing run (O4), LIGO-Virgo GW event candidate validation will require increased levels of automation. Gravity Spy, a machine learning tool that successfully classified common types of LIGO and Virgo glitches in previous observing runs, has the potential to be restructured as a compact binary coalescence (CBC) signal-vs-glitch classifier to accurately distinguish between glitches and GW signals. A CBC signal-vs-glitch classifier used for automation must be robust and compatible with a broad array of background noise, new sources of glitches, and the likely occurrence of overlapping glitches and GWs. We present GSpyNetTree, the Gravity Spy Convolutional Neural Network Decision Tree: a multi-CNN classifier using CNNs in a decision tree sorted via total GW candidate mass tested under these realistic O4-era scenarios.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/ad2194