Loading…
Relativistic coupling of internal and centre of mass dynamics in classical and simple bound quantum mechanical systems
Although special relativity and quantum mechanics revolutionised physics in the early 20th century, the consequences of combining these two theories are still being explored a hundred years later, usually using the formidable theoretical machinery of quantum field theory. However, a formalism access...
Saved in:
Published in: | European journal of physics 2017-07, Vol.38 (4), p.45401 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although special relativity and quantum mechanics revolutionised physics in the early 20th century, the consequences of combining these two theories are still being explored a hundred years later, usually using the formidable theoretical machinery of quantum field theory. However, a formalism accessible to undergraduates has been recently developed which shows how the centre of mass and internal dynamics of classical and quantum systems is relativistically coupled with interesting consequences. Here we explore some of the implications of this coupling, first classically, where we find that the dynamics of the system is time dilated when moving relative to another inertial frame. We then apply the dynamics to a quantum 2-level atom bound in a one-dimensional infinite potential well, and show that the coupling produces collapses and revivals in quantum interference. This example provides an illustration of how the combination of special relativity and quantum mechanics can be studied in situations familiar to most undergraduates. |
---|---|
ISSN: | 0143-0807 1361-6404 |
DOI: | 10.1088/1361-6404/aa6903 |