Loading…
Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling
The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliab...
Saved in:
Published in: | Journal of micromechanics and microengineering 2017-09, Vol.27 (9), p.95015 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from ~436 MPa compressive, to ~13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5-640 kHz and quality factor above 1819 in vacuum obtained. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/1361-6439/aa7ebb |