Loading…
On the electronic structure of benzene and borazine: an algebraic description
The spectrum of a hexagonal ring is analysed using concepts of group theory and a tight-binding model with first, second and third neighbours. The two doublets in the spectrum are explained with the C3 symmetry group together with time-reversal symmetry. Degeneracy lifts are induced by means of vari...
Saved in:
Published in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-05, Vol.53 (10), p.105101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spectrum of a hexagonal ring is analysed using concepts of group theory and a tight-binding model with first, second and third neighbours. The two doublets in the spectrum are explained with the C3 symmetry group together with time-reversal symmetry. Degeneracy lifts are induced by means of various mechanisms. Conjugation symmetry breaking is introduced via magnetic fields, while C3 breaking is studied with the introduction of defects, similar to the inclusion of fluorine atoms. Concrete applications to benzene and borazine are shown as an illustration of our description. Wave functions are described in connection with partial or full aromaticity. Electronic density currents are found for all cases. A detailed study of a supersymmetry in a 6-ring is presented and its consequences on electronic spectra are discussed. |
---|---|
ISSN: | 0953-4075 1361-6455 |
DOI: | 10.1088/1361-6455/ab7c3e |