Loading…
Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting
ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak in...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2017-05, Vol.50 (18), p.185501 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger Isc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa6454 |