Loading…
Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer
The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2017-10, Vol.50 (40), p.405305 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3 |
container_end_page | |
container_issue | 40 |
container_start_page | 405305 |
container_title | Journal of physics. D, Applied physics |
container_volume | 50 |
creator | Ke, Shaoying Lin, Shaoming Ye, Yujie Mao, Danfeng Huang, Wei Xu, Jianfang Li, Cheng Chen, Songyan |
description | The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness 20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature. |
doi_str_mv | 10.1088/1361-6463/aa81ee |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_aa81ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daa81ee</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP65e8zJk3WTpu1mjyq6CoIXPYdpMnGztE1JUmX9IH5eW1c8iTAw8Ob9hplHyBlnl5xJOeei4llVVGIOIDniHpn9SvtkxlieZ2KRLw7JUYwbxlhZST4jn9dDXTdI8c03Q3K-oy3qNXQuthQ6Q2MKGGPmOjNoNFSHbUzQNO4Dvs2uo41_zxK2PQZIQ0AaXeP0OHoHi4HWvjOue6U1xBEfZaBp7SYwYWjROEhIofWhX_sh0hXSBrYYTsiBhSbi6U8_Ji93t88399nj0-rh5uox04LzND6XFxVYu2SyEmJhTW1tjpzVaGGRlyg5l7DkORoB0krDllZzaQpdF8VScxTHhO326uBjDGhVH1wLYas4U1OuagpRTSGqXa4jcrFDnO_Vxg-hGw_8z37-h92okqliqlKwUvXGii9YTYt-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</creator><creatorcontrib>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</creatorcontrib><description>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness 20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aa81ee</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>amorphous Ge ; bubble-free interface ; Si wafer bonding ; stress-induced crystallization</subject><ispartof>Journal of physics. D, Applied physics, 2017-10, Vol.50 (40), p.405305</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</citedby><cites>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ke, Shaoying</creatorcontrib><creatorcontrib>Lin, Shaoming</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Mao, Danfeng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Xu, Jianfang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Songyan</creatorcontrib><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness 20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</description><subject>amorphous Ge</subject><subject>bubble-free interface</subject><subject>Si wafer bonding</subject><subject>stress-induced crystallization</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP65e8zJk3WTpu1mjyq6CoIXPYdpMnGztE1JUmX9IH5eW1c8iTAw8Ob9hplHyBlnl5xJOeei4llVVGIOIDniHpn9SvtkxlieZ2KRLw7JUYwbxlhZST4jn9dDXTdI8c03Q3K-oy3qNXQuthQ6Q2MKGGPmOjNoNFSHbUzQNO4Dvs2uo41_zxK2PQZIQ0AaXeP0OHoHi4HWvjOue6U1xBEfZaBp7SYwYWjROEhIofWhX_sh0hXSBrYYTsiBhSbi6U8_Ji93t88399nj0-rh5uox04LzND6XFxVYu2SyEmJhTW1tjpzVaGGRlyg5l7DkORoB0krDllZzaQpdF8VScxTHhO326uBjDGhVH1wLYas4U1OuagpRTSGqXa4jcrFDnO_Vxg-hGw_8z37-h92okqliqlKwUvXGii9YTYt-</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>Ke, Shaoying</creator><creator>Lin, Shaoming</creator><creator>Ye, Yujie</creator><creator>Mao, Danfeng</creator><creator>Huang, Wei</creator><creator>Xu, Jianfang</creator><creator>Li, Cheng</creator><creator>Chen, Songyan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171011</creationdate><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><author>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>amorphous Ge</topic><topic>bubble-free interface</topic><topic>Si wafer bonding</topic><topic>stress-induced crystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Shaoying</creatorcontrib><creatorcontrib>Lin, Shaoming</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Mao, Danfeng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Xu, Jianfang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Songyan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Shaoying</au><au>Lin, Shaoming</au><au>Ye, Yujie</au><au>Mao, Danfeng</au><au>Huang, Wei</au><au>Xu, Jianfang</au><au>Li, Cheng</au><au>Chen, Songyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2017-10-11</date><risdate>2017</risdate><volume>50</volume><issue>40</issue><spage>405305</spage><pages>405305-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness 20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aa81ee</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2017-10, Vol.50 (40), p.405305 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6463_aa81ee |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | amorphous Ge bubble-free interface Si wafer bonding stress-induced crystallization |
title | Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20evolution%20mechanism%20and%20stress-induced%20crystallization%20in%20low-temperature%20silicon%20wafer%20bonding%20based%20on%20a%20thin%20intermediate%20amorphous%20Ge%20layer&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Ke,%20Shaoying&rft.date=2017-10-11&rft.volume=50&rft.issue=40&rft.spage=405305&rft.pages=405305-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aa81ee&rft_dat=%3Ciop_cross%3Edaa81ee%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |