Loading…

Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer

The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2017-10, Vol.50 (40), p.405305
Main Authors: Ke, Shaoying, Lin, Shaoming, Ye, Yujie, Mao, Danfeng, Huang, Wei, Xu, Jianfang, Li, Cheng, Chen, Songyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3
cites cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3
container_end_page
container_issue 40
container_start_page 405305
container_title Journal of physics. D, Applied physics
container_volume 50
creator Ke, Shaoying
Lin, Shaoming
Ye, Yujie
Mao, Danfeng
Huang, Wei
Xu, Jianfang
Li, Cheng
Chen, Songyan
description The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness     20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.
doi_str_mv 10.1088/1361-6463/aa81ee
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_aa81ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daa81ee</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP65e8zJk3WTpu1mjyq6CoIXPYdpMnGztE1JUmX9IH5eW1c8iTAw8Ob9hplHyBlnl5xJOeei4llVVGIOIDniHpn9SvtkxlieZ2KRLw7JUYwbxlhZST4jn9dDXTdI8c03Q3K-oy3qNXQuthQ6Q2MKGGPmOjNoNFSHbUzQNO4Dvs2uo41_zxK2PQZIQ0AaXeP0OHoHi4HWvjOue6U1xBEfZaBp7SYwYWjROEhIofWhX_sh0hXSBrYYTsiBhSbi6U8_Ji93t88399nj0-rh5uox04LzND6XFxVYu2SyEmJhTW1tjpzVaGGRlyg5l7DkORoB0krDllZzaQpdF8VScxTHhO326uBjDGhVH1wLYas4U1OuagpRTSGqXa4jcrFDnO_Vxg-hGw_8z37-h92okqliqlKwUvXGii9YTYt-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</creator><creatorcontrib>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</creatorcontrib><description>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness     20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aa81ee</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>amorphous Ge ; bubble-free interface ; Si wafer bonding ; stress-induced crystallization</subject><ispartof>Journal of physics. D, Applied physics, 2017-10, Vol.50 (40), p.405305</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</citedby><cites>FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ke, Shaoying</creatorcontrib><creatorcontrib>Lin, Shaoming</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Mao, Danfeng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Xu, Jianfang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Songyan</creatorcontrib><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness     20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</description><subject>amorphous Ge</subject><subject>bubble-free interface</subject><subject>Si wafer bonding</subject><subject>stress-induced crystallization</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP65e8zJk3WTpu1mjyq6CoIXPYdpMnGztE1JUmX9IH5eW1c8iTAw8Ob9hplHyBlnl5xJOeei4llVVGIOIDniHpn9SvtkxlieZ2KRLw7JUYwbxlhZST4jn9dDXTdI8c03Q3K-oy3qNXQuthQ6Q2MKGGPmOjNoNFSHbUzQNO4Dvs2uo41_zxK2PQZIQ0AaXeP0OHoHi4HWvjOue6U1xBEfZaBp7SYwYWjROEhIofWhX_sh0hXSBrYYTsiBhSbi6U8_Ji93t88399nj0-rh5uox04LzND6XFxVYu2SyEmJhTW1tjpzVaGGRlyg5l7DkORoB0krDllZzaQpdF8VScxTHhO326uBjDGhVH1wLYas4U1OuagpRTSGqXa4jcrFDnO_Vxg-hGw_8z37-h92okqliqlKwUvXGii9YTYt-</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>Ke, Shaoying</creator><creator>Lin, Shaoming</creator><creator>Ye, Yujie</creator><creator>Mao, Danfeng</creator><creator>Huang, Wei</creator><creator>Xu, Jianfang</creator><creator>Li, Cheng</creator><creator>Chen, Songyan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171011</creationdate><title>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</title><author>Ke, Shaoying ; Lin, Shaoming ; Ye, Yujie ; Mao, Danfeng ; Huang, Wei ; Xu, Jianfang ; Li, Cheng ; Chen, Songyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>amorphous Ge</topic><topic>bubble-free interface</topic><topic>Si wafer bonding</topic><topic>stress-induced crystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Shaoying</creatorcontrib><creatorcontrib>Lin, Shaoming</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Mao, Danfeng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Xu, Jianfang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Songyan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Shaoying</au><au>Lin, Shaoming</au><au>Ye, Yujie</au><au>Mao, Danfeng</au><au>Huang, Wei</au><au>Xu, Jianfang</au><au>Li, Cheng</au><au>Chen, Songyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2017-10-11</date><risdate>2017</risdate><volume>50</volume><issue>40</issue><spage>405305</spage><pages>405305-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The dependence of the morphology and crystallinity of an amorphous Ge (a-Ge) interlayer between two Si wafers on the annealing temperature is identified to understand the bubble evolution mechanism. The effect of a-Ge layer thickness on the bubble density and size at different annealing temperatures is also clearly clarified. It suggests that the bubble density is significantly affected by the crystallinity and thickness of the a-Ge layer. With the increase of the crystallinity and thickness of the a-Ge layer, the bubble density decreases. It is important that a near-bubble-free Ge interface, which is also an oxide-free interface, is achieved when the bonded Si wafers (a-Ge layer thickness     20 nm) are annealed at 400 °C. Furthermore, the crystallization temperature of the a-Ge between the bonded Si wafers is lower than that on a Si substrate alone and the Ge grains firstly form at the Ge/Ge bonded interface, rather than the Ge/Si interface. We believe that the stress-induced crystallization of a-Ge film and the intermixing of Ge atoms at the Ge/Ge interface can be responsible for this feature.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aa81ee</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2017-10, Vol.50 (40), p.405305
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_aa81ee
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects amorphous Ge
bubble-free interface
Si wafer bonding
stress-induced crystallization
title Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20evolution%20mechanism%20and%20stress-induced%20crystallization%20in%20low-temperature%20silicon%20wafer%20bonding%20based%20on%20a%20thin%20intermediate%20amorphous%20Ge%20layer&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Ke,%20Shaoying&rft.date=2017-10-11&rft.volume=50&rft.issue=40&rft.spage=405305&rft.pages=405305-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aa81ee&rft_dat=%3Ciop_cross%3Edaa81ee%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-64246aff9086337fdbff2e10befa725e8118a912ed3a8f8d09fc18d4cb449c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true