Loading…

Graphene field-effect transistors: the road to bioelectronics

Graphene field-effect transistors (GFET) transduce biomolecule charges or cellular voltage signals into a change in their current-voltage (I-V) characteristics. Inherent from the outstanding material properties of graphene, single-GFET based biosensors and cell interfaces feature high-sensitivity, l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2018-12, Vol.51 (49), p.493001
Main Authors: Donnelly, Matthew, Mao, Dacheng, Park, Junsu, Xu, Guangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene field-effect transistors (GFET) transduce biomolecule charges or cellular voltage signals into a change in their current-voltage (I-V) characteristics. Inherent from the outstanding material properties of graphene, single-GFET based biosensors and cell interfaces feature high-sensitivity, low-noise, low-voltage operation, in vivo biocompatibility, and can be surface functionalized to achieve high selectivity. Moreover, high density GFET arrays hold promise as a high-throughput bio-array or cell-chip platform and are compatible with chip-scale integration. This paper presents an overview of these disciplines and highlights recent advances on GFET based biosensing and cell recording for molecular and cellular biology studies. The discussion will assess the GFET performance at both single-FET and array levels, with comments on their ultimate promise in bioelectronics by comparing with other nanomaterial based FETs (nano-FET).
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/aadcca