Loading…

Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys

In (Mn, Fe)2(P, Si) alloys crystallographic first-order phase transformations enable strong coupling of magnetic and entropic properties, potentially leading to high-efficiency energy generation and refrigeration applications. Although hysteresis losses that limit these applications can be reduced t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2020-05, Vol.53 (20), p.205303
Main Authors: Brown, T D, Chen, J-H, Braham, E J, Stadler, S, Shamberger, P J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In (Mn, Fe)2(P, Si) alloys crystallographic first-order phase transformations enable strong coupling of magnetic and entropic properties, potentially leading to high-efficiency energy generation and refrigeration applications. Although hysteresis losses that limit these applications can be reduced through careful control of alloy composition, compositional tuning can also unfavorably influence transformation temperatures and magnetocaloric coupling strength. Hence, exploration of additional processing variables enabling independent control of transformation properties is crucial. In this work, we investigate the role of thermal history as an additional processing variable, exploiting thermally-activated mechanisms to control properties of non-diffusive transformations in (Mn, Fe)2(P, Si) alloys. In so doing, we report an unusual transformation-splitting phenomenon following annealing at intermediate times, where a single well-defined magneto-structural transformation evolves towards a multi-step transformation with individual steps occurring at multiple distinct temperatures. On longer annealing at the same temperatures, single-step transformation behavior is recovered. Through additional magnetic and crystallographic characterization, we show that the thermal history-controlled multi-step behavior results from sluggish thermally-activated diffusion. The two-step transformation corresponds to non-equilibrium bimodal composition distributions in the transforming phase, and these develop through a dynamic re-equilibration process as the alloy passes relatively slowly between different thermal equilibria. Together, these results suggest that thermal history primarily controls the transformation properties of (Mn, Fe)2(P, Si) alloys indirectly through the composition of one or more transforming phases. Additional investigations are needed to develop thermal history processing for decoupling hysteresis control from other transformation properties.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/ab768a