Loading…

Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios

The metal-semiconductor-metal (MSM) structure is a popular architecture for developing Ga 2 O 3 solar blind photodetectors. The nature of metal-semiconductor contact is decisive for the operation mode, gain mechanism and device performances. In this contribution, κ -Ga 2 O 3 MSM solar-blind photodet...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2022-09, Vol.55 (39), p.394003
Main Authors: Cui, Mei, Xu, Yang, Sun, Xinyu, Wang, Zhengpeng, Gong, Hehe, Chen, Xuanhu, Hu, Tiancheng, Zhang, Yijun, Ren, Fang-fang, Gu, Shulin, Ye, Jiandong, Zhang, Rong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523
cites cdi_FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523
container_end_page
container_issue 39
container_start_page 394003
container_title Journal of physics. D, Applied physics
container_volume 55
creator Cui, Mei
Xu, Yang
Sun, Xinyu
Wang, Zhengpeng
Gong, Hehe
Chen, Xuanhu
Hu, Tiancheng
Zhang, Yijun
Ren, Fang-fang
Gu, Shulin
Ye, Jiandong
Zhang, Rong
description The metal-semiconductor-metal (MSM) structure is a popular architecture for developing Ga 2 O 3 solar blind photodetectors. The nature of metal-semiconductor contact is decisive for the operation mode, gain mechanism and device performances. In this contribution, κ -Ga 2 O 3 MSM solar-blind photodetectors with Ti/Ga 2 O 3 Ohmic and Ni/Ga 2 O 3 Schottky contacts were constructed on the high-quality Si-doped κ -Ga 2 O 3 epilayer grown by hydride vapor phase epitaxy. The Ti/ κ -Ga 2 O 3 /Ti Ohmic MSM device is operated in a photoconductive mode, exhibiting a maximum responsivity of 322.5 A W −1 and a high rejection ratio of over 10 5 , but with an undesirable sub-gap response and high dark current. In comparison, the Ni/Ga 2 O 3 /Ni photodiode with a back-to-back Schottky configuration is operated in a mixed photovoltaic and photoconductive mode, demonstrating a decent photoresponsivity of 0.37 A W −1 , a maintained high rejection ratio of 1.16 × 10 5 , a detectivity of 3.51 × 10 13 Jones and the elimination of slow photoresponse from sub-gap states. The frequency-dependent photoresponse and transient photocurrent characteristics indicate that the persistent photoconductivity effect is responsible for the high gain achieved in the Ti/Ga 2 O 3 /Ti photoconductor, and the dominant slow transient decay component is a fingerprint of photoexcited carrier trapping and repopulation. The response speed is improved in the Ni/Ga 2 O 3 /Ni Schottky MSM device, whereas carrier transport across interdigitated fingers is affected by bulk traps, limiting the overall response-bandwidth merit.
doi_str_mv 10.1088/1361-6463/ac7f68
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ac7f68</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6463_ac7f68</sourcerecordid><originalsourceid>FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhC0EEqWwZ-kLmPoncV6XqIKCVKksuo8c55m4SuLKDq24GofgTDRtxWqkTzOz-Ah5FPxJcICZUFownWk1M7ZwGq7I5B9dkwnnUjJVyOKW3KW05ZznGsSEHD6aMAQb-vrLDn6P1PQ13Y1sH9rBeEs7HEzLEnb-0gqRnRj9_WFLQyVdU0VTaE1kVeuP8xoHHGuJHvzQ0MZ_NjTi9sh86Gk0x0j35MaZNuHDJadk8_qyWbyx1Xr5vnheMQsALEOOyhaZA4lzm82dzas5ZoUUItPcgLBCF1Y4pyWgM06BqypQeSUlVDqXakr4-dbGkFJEV-6i70z8LgUvR2_lKKkcJZVnb-oPEX9kDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Cui, Mei ; Xu, Yang ; Sun, Xinyu ; Wang, Zhengpeng ; Gong, Hehe ; Chen, Xuanhu ; Hu, Tiancheng ; Zhang, Yijun ; Ren, Fang-fang ; Gu, Shulin ; Ye, Jiandong ; Zhang, Rong</creator><creatorcontrib>Cui, Mei ; Xu, Yang ; Sun, Xinyu ; Wang, Zhengpeng ; Gong, Hehe ; Chen, Xuanhu ; Hu, Tiancheng ; Zhang, Yijun ; Ren, Fang-fang ; Gu, Shulin ; Ye, Jiandong ; Zhang, Rong</creatorcontrib><description>The metal-semiconductor-metal (MSM) structure is a popular architecture for developing Ga 2 O 3 solar blind photodetectors. The nature of metal-semiconductor contact is decisive for the operation mode, gain mechanism and device performances. In this contribution, κ -Ga 2 O 3 MSM solar-blind photodetectors with Ti/Ga 2 O 3 Ohmic and Ni/Ga 2 O 3 Schottky contacts were constructed on the high-quality Si-doped κ -Ga 2 O 3 epilayer grown by hydride vapor phase epitaxy. The Ti/ κ -Ga 2 O 3 /Ti Ohmic MSM device is operated in a photoconductive mode, exhibiting a maximum responsivity of 322.5 A W −1 and a high rejection ratio of over 10 5 , but with an undesirable sub-gap response and high dark current. In comparison, the Ni/Ga 2 O 3 /Ni photodiode with a back-to-back Schottky configuration is operated in a mixed photovoltaic and photoconductive mode, demonstrating a decent photoresponsivity of 0.37 A W −1 , a maintained high rejection ratio of 1.16 × 10 5 , a detectivity of 3.51 × 10 13 Jones and the elimination of slow photoresponse from sub-gap states. The frequency-dependent photoresponse and transient photocurrent characteristics indicate that the persistent photoconductivity effect is responsible for the high gain achieved in the Ti/Ga 2 O 3 /Ti photoconductor, and the dominant slow transient decay component is a fingerprint of photoexcited carrier trapping and repopulation. The response speed is improved in the Ni/Ga 2 O 3 /Ni Schottky MSM device, whereas carrier transport across interdigitated fingers is affected by bulk traps, limiting the overall response-bandwidth merit.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ac7f68</identifier><language>eng</language><ispartof>Journal of physics. D, Applied physics, 2022-09, Vol.55 (39), p.394003</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523</citedby><cites>FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523</cites><orcidid>0000-0002-3985-6768 ; 0000-0002-3328-6186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Mei</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Sun, Xinyu</creatorcontrib><creatorcontrib>Wang, Zhengpeng</creatorcontrib><creatorcontrib>Gong, Hehe</creatorcontrib><creatorcontrib>Chen, Xuanhu</creatorcontrib><creatorcontrib>Hu, Tiancheng</creatorcontrib><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Ren, Fang-fang</creatorcontrib><creatorcontrib>Gu, Shulin</creatorcontrib><creatorcontrib>Ye, Jiandong</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><title>Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios</title><title>Journal of physics. D, Applied physics</title><description>The metal-semiconductor-metal (MSM) structure is a popular architecture for developing Ga 2 O 3 solar blind photodetectors. The nature of metal-semiconductor contact is decisive for the operation mode, gain mechanism and device performances. In this contribution, κ -Ga 2 O 3 MSM solar-blind photodetectors with Ti/Ga 2 O 3 Ohmic and Ni/Ga 2 O 3 Schottky contacts were constructed on the high-quality Si-doped κ -Ga 2 O 3 epilayer grown by hydride vapor phase epitaxy. The Ti/ κ -Ga 2 O 3 /Ti Ohmic MSM device is operated in a photoconductive mode, exhibiting a maximum responsivity of 322.5 A W −1 and a high rejection ratio of over 10 5 , but with an undesirable sub-gap response and high dark current. In comparison, the Ni/Ga 2 O 3 /Ni photodiode with a back-to-back Schottky configuration is operated in a mixed photovoltaic and photoconductive mode, demonstrating a decent photoresponsivity of 0.37 A W −1 , a maintained high rejection ratio of 1.16 × 10 5 , a detectivity of 3.51 × 10 13 Jones and the elimination of slow photoresponse from sub-gap states. The frequency-dependent photoresponse and transient photocurrent characteristics indicate that the persistent photoconductivity effect is responsible for the high gain achieved in the Ti/Ga 2 O 3 /Ti photoconductor, and the dominant slow transient decay component is a fingerprint of photoexcited carrier trapping and repopulation. The response speed is improved in the Ni/Ga 2 O 3 /Ni Schottky MSM device, whereas carrier transport across interdigitated fingers is affected by bulk traps, limiting the overall response-bandwidth merit.</description><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhC0EEqWwZ-kLmPoncV6XqIKCVKksuo8c55m4SuLKDq24GofgTDRtxWqkTzOz-Ah5FPxJcICZUFownWk1M7ZwGq7I5B9dkwnnUjJVyOKW3KW05ZznGsSEHD6aMAQb-vrLDn6P1PQ13Y1sH9rBeEs7HEzLEnb-0gqRnRj9_WFLQyVdU0VTaE1kVeuP8xoHHGuJHvzQ0MZ_NjTi9sh86Gk0x0j35MaZNuHDJadk8_qyWbyx1Xr5vnheMQsALEOOyhaZA4lzm82dzas5ZoUUItPcgLBCF1Y4pyWgM06BqypQeSUlVDqXakr4-dbGkFJEV-6i70z8LgUvR2_lKKkcJZVnb-oPEX9kDg</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Cui, Mei</creator><creator>Xu, Yang</creator><creator>Sun, Xinyu</creator><creator>Wang, Zhengpeng</creator><creator>Gong, Hehe</creator><creator>Chen, Xuanhu</creator><creator>Hu, Tiancheng</creator><creator>Zhang, Yijun</creator><creator>Ren, Fang-fang</creator><creator>Gu, Shulin</creator><creator>Ye, Jiandong</creator><creator>Zhang, Rong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3985-6768</orcidid><orcidid>https://orcid.org/0000-0002-3328-6186</orcidid></search><sort><creationdate>20220929</creationdate><title>Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios</title><author>Cui, Mei ; Xu, Yang ; Sun, Xinyu ; Wang, Zhengpeng ; Gong, Hehe ; Chen, Xuanhu ; Hu, Tiancheng ; Zhang, Yijun ; Ren, Fang-fang ; Gu, Shulin ; Ye, Jiandong ; Zhang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Mei</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Sun, Xinyu</creatorcontrib><creatorcontrib>Wang, Zhengpeng</creatorcontrib><creatorcontrib>Gong, Hehe</creatorcontrib><creatorcontrib>Chen, Xuanhu</creatorcontrib><creatorcontrib>Hu, Tiancheng</creatorcontrib><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Ren, Fang-fang</creatorcontrib><creatorcontrib>Gu, Shulin</creatorcontrib><creatorcontrib>Ye, Jiandong</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Mei</au><au>Xu, Yang</au><au>Sun, Xinyu</au><au>Wang, Zhengpeng</au><au>Gong, Hehe</au><au>Chen, Xuanhu</au><au>Hu, Tiancheng</au><au>Zhang, Yijun</au><au>Ren, Fang-fang</au><au>Gu, Shulin</au><au>Ye, Jiandong</au><au>Zhang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2022-09-29</date><risdate>2022</risdate><volume>55</volume><issue>39</issue><spage>394003</spage><pages>394003-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><abstract>The metal-semiconductor-metal (MSM) structure is a popular architecture for developing Ga 2 O 3 solar blind photodetectors. The nature of metal-semiconductor contact is decisive for the operation mode, gain mechanism and device performances. In this contribution, κ -Ga 2 O 3 MSM solar-blind photodetectors with Ti/Ga 2 O 3 Ohmic and Ni/Ga 2 O 3 Schottky contacts were constructed on the high-quality Si-doped κ -Ga 2 O 3 epilayer grown by hydride vapor phase epitaxy. The Ti/ κ -Ga 2 O 3 /Ti Ohmic MSM device is operated in a photoconductive mode, exhibiting a maximum responsivity of 322.5 A W −1 and a high rejection ratio of over 10 5 , but with an undesirable sub-gap response and high dark current. In comparison, the Ni/Ga 2 O 3 /Ni photodiode with a back-to-back Schottky configuration is operated in a mixed photovoltaic and photoconductive mode, demonstrating a decent photoresponsivity of 0.37 A W −1 , a maintained high rejection ratio of 1.16 × 10 5 , a detectivity of 3.51 × 10 13 Jones and the elimination of slow photoresponse from sub-gap states. The frequency-dependent photoresponse and transient photocurrent characteristics indicate that the persistent photoconductivity effect is responsible for the high gain achieved in the Ti/Ga 2 O 3 /Ti photoconductor, and the dominant slow transient decay component is a fingerprint of photoexcited carrier trapping and repopulation. The response speed is improved in the Ni/Ga 2 O 3 /Ni Schottky MSM device, whereas carrier transport across interdigitated fingers is affected by bulk traps, limiting the overall response-bandwidth merit.</abstract><doi>10.1088/1361-6463/ac7f68</doi><orcidid>https://orcid.org/0000-0002-3985-6768</orcidid><orcidid>https://orcid.org/0000-0002-3328-6186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2022-09, Vol.55 (39), p.394003
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ac7f68
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga 2 O 3 solar-blind detectors with high rejection ratios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoconductive%20and%20photovoltaic%20metal-semiconductor-metal%20%CE%BA-Ga%202%20O%203%20solar-blind%20detectors%20with%20high%20rejection%20ratios&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Cui,%20Mei&rft.date=2022-09-29&rft.volume=55&rft.issue=39&rft.spage=394003&rft.pages=394003-&rft.issn=0022-3727&rft.eissn=1361-6463&rft_id=info:doi/10.1088/1361-6463/ac7f68&rft_dat=%3Ccrossref%3E10_1088_1361_6463_ac7f68%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c888-4e0e3c74f82e9c49fc5b9e47211460a81c167c1ff628efaf38fbb835b228b6523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true