Loading…
A new treatment of nonlocality in scattering process
Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present...
Saved in:
Published in: | Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3 |
container_end_page | |
container_issue | 1 |
container_start_page | 15106 |
container_title | Journal of physics. G, Nuclear and particle physics |
container_volume | 45 |
creator | Upadhyay, N J Bhagwat, A Jain, B K |
description | Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments. |
doi_str_mv | 10.1088/1361-6471/aa9877 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6471_aa9877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpgaa9877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</originalsourceid><addsrcrecordid>eNp1j01LxDAYhIMoWFfvHnPxZt03TdL2PS6LX7DgRc8hadOlSzcpSUT239tS8aSngWFmmIeQWwYPDOp6zXjJ8lJUbK011lV1RrJf65xkgFLkvEa8JFcxHgBACi4yIjbU2S-agtXpaF2ivqPOu8E3eujTifaOxkanZEPv9nQMvrExXpOLTg_R3vzoinw8Pb5vX_Ld2_PrdrPLG84g5YhYtAZryQSCkJUxQlpTtNh0YgpoBMahmgzRmumPtRxbC9gVpWmLEgxfEVh2m-BjDLZTY-iPOpwUAzVTqxlRzYhqoZ4qd0ul96M6-M_gpoNqr4RUTAGTDEo1tt2Uu_8j9-_sN29NY9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new treatment of nonlocality in scattering process</title><source>Institute of Physics</source><creator>Upadhyay, N J ; Bhagwat, A ; Jain, B K</creator><creatorcontrib>Upadhyay, N J ; Bhagwat, A ; Jain, B K</creatorcontrib><description>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</description><identifier>ISSN: 0954-3899</identifier><identifier>EISSN: 1361-6471</identifier><identifier>DOI: 10.1088/1361-6471/aa9877</identifier><identifier>CODEN: JPGPED</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>neutron nucleus scattering ; nonlocal kernel ; nonlocality</subject><ispartof>Journal of physics. G, Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</citedby><cites>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</cites><orcidid>0000-0003-2465-2479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Upadhyay, N J</creatorcontrib><creatorcontrib>Bhagwat, A</creatorcontrib><creatorcontrib>Jain, B K</creatorcontrib><title>A new treatment of nonlocality in scattering process</title><title>Journal of physics. G, Nuclear and particle physics</title><addtitle>JPG</addtitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><description>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</description><subject>neutron nucleus scattering</subject><subject>nonlocal kernel</subject><subject>nonlocality</subject><issn>0954-3899</issn><issn>1361-6471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAYhIMoWFfvHnPxZt03TdL2PS6LX7DgRc8hadOlSzcpSUT239tS8aSngWFmmIeQWwYPDOp6zXjJ8lJUbK011lV1RrJf65xkgFLkvEa8JFcxHgBACi4yIjbU2S-agtXpaF2ivqPOu8E3eujTifaOxkanZEPv9nQMvrExXpOLTg_R3vzoinw8Pb5vX_Ld2_PrdrPLG84g5YhYtAZryQSCkJUxQlpTtNh0YgpoBMahmgzRmumPtRxbC9gVpWmLEgxfEVh2m-BjDLZTY-iPOpwUAzVTqxlRzYhqoZ4qd0ul96M6-M_gpoNqr4RUTAGTDEo1tt2Uu_8j9-_sN29NY9Y</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Upadhyay, N J</creator><creator>Bhagwat, A</creator><creator>Jain, B K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2465-2479</orcidid></search><sort><creationdate>20180101</creationdate><title>A new treatment of nonlocality in scattering process</title><author>Upadhyay, N J ; Bhagwat, A ; Jain, B K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>neutron nucleus scattering</topic><topic>nonlocal kernel</topic><topic>nonlocality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Upadhyay, N J</creatorcontrib><creatorcontrib>Bhagwat, A</creatorcontrib><creatorcontrib>Jain, B K</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upadhyay, N J</au><au>Bhagwat, A</au><au>Jain, B K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new treatment of nonlocality in scattering process</atitle><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle><stitle>JPG</stitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>45</volume><issue>1</issue><spage>15106</spage><pages>15106-</pages><issn>0954-3899</issn><eissn>1361-6471</eissn><coden>JPGPED</coden><abstract>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6471/aa9877</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2465-2479</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-3899 |
ispartof | Journal of physics. G, Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106 |
issn | 0954-3899 1361-6471 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6471_aa9877 |
source | Institute of Physics |
subjects | neutron nucleus scattering nonlocal kernel nonlocality |
title | A new treatment of nonlocality in scattering process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20treatment%20of%20nonlocality%20in%20scattering%20process&rft.jtitle=Journal%20of%20physics.%20G,%20Nuclear%20and%20particle%20physics&rft.au=Upadhyay,%20N%20J&rft.date=2018-01-01&rft.volume=45&rft.issue=1&rft.spage=15106&rft.pages=15106-&rft.issn=0954-3899&rft.eissn=1361-6471&rft.coden=JPGPED&rft_id=info:doi/10.1088/1361-6471/aa9877&rft_dat=%3Ciop_cross%3Ejpgaa9877%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |