Loading…

A new treatment of nonlocality in scattering process

Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106
Main Authors: Upadhyay, N J, Bhagwat, A, Jain, B K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3
cites cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3
container_end_page
container_issue 1
container_start_page 15106
container_title Journal of physics. G, Nuclear and particle physics
container_volume 45
creator Upadhyay, N J
Bhagwat, A
Jain, B K
description Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.
doi_str_mv 10.1088/1361-6471/aa9877
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6471_aa9877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpgaa9877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</originalsourceid><addsrcrecordid>eNp1j01LxDAYhIMoWFfvHnPxZt03TdL2PS6LX7DgRc8hadOlSzcpSUT239tS8aSngWFmmIeQWwYPDOp6zXjJ8lJUbK011lV1RrJf65xkgFLkvEa8JFcxHgBACi4yIjbU2S-agtXpaF2ivqPOu8E3eujTifaOxkanZEPv9nQMvrExXpOLTg_R3vzoinw8Pb5vX_Ld2_PrdrPLG84g5YhYtAZryQSCkJUxQlpTtNh0YgpoBMahmgzRmumPtRxbC9gVpWmLEgxfEVh2m-BjDLZTY-iPOpwUAzVTqxlRzYhqoZ4qd0ul96M6-M_gpoNqr4RUTAGTDEo1tt2Uu_8j9-_sN29NY9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new treatment of nonlocality in scattering process</title><source>Institute of Physics</source><creator>Upadhyay, N J ; Bhagwat, A ; Jain, B K</creator><creatorcontrib>Upadhyay, N J ; Bhagwat, A ; Jain, B K</creatorcontrib><description>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</description><identifier>ISSN: 0954-3899</identifier><identifier>EISSN: 1361-6471</identifier><identifier>DOI: 10.1088/1361-6471/aa9877</identifier><identifier>CODEN: JPGPED</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>neutron nucleus scattering ; nonlocal kernel ; nonlocality</subject><ispartof>Journal of physics. G, Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</citedby><cites>FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</cites><orcidid>0000-0003-2465-2479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Upadhyay, N J</creatorcontrib><creatorcontrib>Bhagwat, A</creatorcontrib><creatorcontrib>Jain, B K</creatorcontrib><title>A new treatment of nonlocality in scattering process</title><title>Journal of physics. G, Nuclear and particle physics</title><addtitle>JPG</addtitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><description>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</description><subject>neutron nucleus scattering</subject><subject>nonlocal kernel</subject><subject>nonlocality</subject><issn>0954-3899</issn><issn>1361-6471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAYhIMoWFfvHnPxZt03TdL2PS6LX7DgRc8hadOlSzcpSUT239tS8aSngWFmmIeQWwYPDOp6zXjJ8lJUbK011lV1RrJf65xkgFLkvEa8JFcxHgBACi4yIjbU2S-agtXpaF2ivqPOu8E3eujTifaOxkanZEPv9nQMvrExXpOLTg_R3vzoinw8Pb5vX_Ld2_PrdrPLG84g5YhYtAZryQSCkJUxQlpTtNh0YgpoBMahmgzRmumPtRxbC9gVpWmLEgxfEVh2m-BjDLZTY-iPOpwUAzVTqxlRzYhqoZ4qd0ul96M6-M_gpoNqr4RUTAGTDEo1tt2Uu_8j9-_sN29NY9Y</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Upadhyay, N J</creator><creator>Bhagwat, A</creator><creator>Jain, B K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2465-2479</orcidid></search><sort><creationdate>20180101</creationdate><title>A new treatment of nonlocality in scattering process</title><author>Upadhyay, N J ; Bhagwat, A ; Jain, B K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>neutron nucleus scattering</topic><topic>nonlocal kernel</topic><topic>nonlocality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Upadhyay, N J</creatorcontrib><creatorcontrib>Bhagwat, A</creatorcontrib><creatorcontrib>Jain, B K</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upadhyay, N J</au><au>Bhagwat, A</au><au>Jain, B K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new treatment of nonlocality in scattering process</atitle><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle><stitle>JPG</stitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>45</volume><issue>1</issue><spage>15106</spage><pages>15106-</pages><issn>0954-3899</issn><eissn>1361-6471</eissn><coden>JPGPED</coden><abstract>Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r, r ′ -dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6471/aa9877</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2465-2479</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-3899
ispartof Journal of physics. G, Nuclear and particle physics, 2018-01, Vol.45 (1), p.15106
issn 0954-3899
1361-6471
language eng
recordid cdi_crossref_primary_10_1088_1361_6471_aa9877
source Institute of Physics
subjects neutron nucleus scattering
nonlocal kernel
nonlocality
title A new treatment of nonlocality in scattering process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20treatment%20of%20nonlocality%20in%20scattering%20process&rft.jtitle=Journal%20of%20physics.%20G,%20Nuclear%20and%20particle%20physics&rft.au=Upadhyay,%20N%20J&rft.date=2018-01-01&rft.volume=45&rft.issue=1&rft.spage=15106&rft.pages=15106-&rft.issn=0954-3899&rft.eissn=1361-6471&rft.coden=JPGPED&rft_id=info:doi/10.1088/1361-6471/aa9877&rft_dat=%3Ciop_cross%3Ejpgaa9877%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-9992db9851490457bb45eb2d9cf4310a901307b2d4db005ee39de09f26bd260b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true