Loading…

Environmental noise spectroscopy with qubits subjected to dynamical decoupling

A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2017-08, Vol.29 (33), p.333001-333001
Main Authors: Sza kowski, P, Ramon, G, Krzywda, J, Kwiatkowski, D, Cywi ski
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/aa7648