Loading…
The high-pressure, high-temperature phase diagram of cerium
We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pres...
Saved in:
Published in: | Journal of physics. Condensed matter 2020-08, Vol.32 (33), p.335401 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53 |
container_end_page | |
container_issue | 33 |
container_start_page | 335401 |
container_title | Journal of physics. Condensed matter |
container_volume | 32 |
creator | Munro, K A Daisenberger, D MacLeod, S G McGuire, S Loa, I Popescu, C Botella, P Errandonea, D McMahon, M I |
description | We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4-oC4-tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1-2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less steep than the 670 K (GPa)−1 reported previously, and find the oC4 → tI2 phase boundary to lie at higher temperatures than previously found. We also find variations as large as 2-3 GPa in the transition pressures at which the oC4 → tI2 transition takes place at a given temperature, the reasons for which remain unclear. Finally, we find no evidence that the α-cF4 → tI2 is not second order at all temperatures up to 820 K. |
doi_str_mv | 10.1088/1361-648X/ab7f02 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_ab7f02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377678039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqQ3Pawuv5qkeBrzJwy8TPEW0uR161htTVrE_96OzokH4UF4j8_7hvdB6Jzga4KVmhAmSCy4epuYTOaYHqDhfnSIhjhNWKxSxQfoJIQ1xpgrxo_RgFEieSL4EN0sVhCtiuUqrj2E0HoY920DZQ3eNN0kqlcmQOQKs_SmjKo8suCLtjxFR7nZBDjbvSP0cn-3mD3G8-eHp9l0HlvOZROn1FqVutykFLBwjgpjEkExz3CeOOOwyJgkSjJmKWSOUElE5iClFIi0LmEjNO5zwyfUbaZrX5TGf-nKFPq2eJ3qyi_1pmm1VNuLR-iqx2tffbQQGl0WwcJmY96haoOmTErRoSztUNyj1lcheMj32QTrrWG91am3OnVvuFu52KW3WQluv_CjtAMue6Coar2uWv_eudG27AjNWFcJx0TXLv-96w_578_flPSRzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377678039</pqid></control><display><type>article</type><title>The high-pressure, high-temperature phase diagram of cerium</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Munro, K A ; Daisenberger, D ; MacLeod, S G ; McGuire, S ; Loa, I ; Popescu, C ; Botella, P ; Errandonea, D ; McMahon, M I</creator><creatorcontrib>Munro, K A ; Daisenberger, D ; MacLeod, S G ; McGuire, S ; Loa, I ; Popescu, C ; Botella, P ; Errandonea, D ; McMahon, M I</creatorcontrib><description>We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4-oC4-tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1-2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less steep than the 670 K (GPa)−1 reported previously, and find the oC4 → tI2 phase boundary to lie at higher temperatures than previously found. We also find variations as large as 2-3 GPa in the transition pressures at which the oC4 → tI2 transition takes place at a given temperature, the reasons for which remain unclear. Finally, we find no evidence that the α-cF4 → tI2 is not second order at all temperatures up to 820 K.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab7f02</identifier><identifier>PMID: 32174564</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>cerium ; Experimental Physics ; Experimentell fysik ; high pressure ; phase diagram</subject><ispartof>Journal of physics. Condensed matter, 2020-08, Vol.32 (33), p.335401</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53</citedby><cites>FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53</cites><orcidid>0000-0002-7797-9806 ; 0000-0003-4343-344X ; 0000-0003-0189-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32174564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78095$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Munro, K A</creatorcontrib><creatorcontrib>Daisenberger, D</creatorcontrib><creatorcontrib>MacLeod, S G</creatorcontrib><creatorcontrib>McGuire, S</creatorcontrib><creatorcontrib>Loa, I</creatorcontrib><creatorcontrib>Popescu, C</creatorcontrib><creatorcontrib>Botella, P</creatorcontrib><creatorcontrib>Errandonea, D</creatorcontrib><creatorcontrib>McMahon, M I</creatorcontrib><title>The high-pressure, high-temperature phase diagram of cerium</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4-oC4-tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1-2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less steep than the 670 K (GPa)−1 reported previously, and find the oC4 → tI2 phase boundary to lie at higher temperatures than previously found. We also find variations as large as 2-3 GPa in the transition pressures at which the oC4 → tI2 transition takes place at a given temperature, the reasons for which remain unclear. Finally, we find no evidence that the α-cF4 → tI2 is not second order at all temperatures up to 820 K.</description><subject>cerium</subject><subject>Experimental Physics</subject><subject>Experimentell fysik</subject><subject>high pressure</subject><subject>phase diagram</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqQ3Pawuv5qkeBrzJwy8TPEW0uR161htTVrE_96OzokH4UF4j8_7hvdB6Jzga4KVmhAmSCy4epuYTOaYHqDhfnSIhjhNWKxSxQfoJIQ1xpgrxo_RgFEieSL4EN0sVhCtiuUqrj2E0HoY920DZQ3eNN0kqlcmQOQKs_SmjKo8suCLtjxFR7nZBDjbvSP0cn-3mD3G8-eHp9l0HlvOZROn1FqVutykFLBwjgpjEkExz3CeOOOwyJgkSjJmKWSOUElE5iClFIi0LmEjNO5zwyfUbaZrX5TGf-nKFPq2eJ3qyi_1pmm1VNuLR-iqx2tffbQQGl0WwcJmY96haoOmTErRoSztUNyj1lcheMj32QTrrWG91am3OnVvuFu52KW3WQluv_CjtAMue6Coar2uWv_eudG27AjNWFcJx0TXLv-96w_578_flPSRzA</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Munro, K A</creator><creator>Daisenberger, D</creator><creator>MacLeod, S G</creator><creator>McGuire, S</creator><creator>Loa, I</creator><creator>Popescu, C</creator><creator>Botella, P</creator><creator>Errandonea, D</creator><creator>McMahon, M I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-7797-9806</orcidid><orcidid>https://orcid.org/0000-0003-4343-344X</orcidid><orcidid>https://orcid.org/0000-0003-0189-4221</orcidid></search><sort><creationdate>20200805</creationdate><title>The high-pressure, high-temperature phase diagram of cerium</title><author>Munro, K A ; Daisenberger, D ; MacLeod, S G ; McGuire, S ; Loa, I ; Popescu, C ; Botella, P ; Errandonea, D ; McMahon, M I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cerium</topic><topic>Experimental Physics</topic><topic>Experimentell fysik</topic><topic>high pressure</topic><topic>phase diagram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munro, K A</creatorcontrib><creatorcontrib>Daisenberger, D</creatorcontrib><creatorcontrib>MacLeod, S G</creatorcontrib><creatorcontrib>McGuire, S</creatorcontrib><creatorcontrib>Loa, I</creatorcontrib><creatorcontrib>Popescu, C</creatorcontrib><creatorcontrib>Botella, P</creatorcontrib><creatorcontrib>Errandonea, D</creatorcontrib><creatorcontrib>McMahon, M I</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munro, K A</au><au>Daisenberger, D</au><au>MacLeod, S G</au><au>McGuire, S</au><au>Loa, I</au><au>Popescu, C</au><au>Botella, P</au><au>Errandonea, D</au><au>McMahon, M I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The high-pressure, high-temperature phase diagram of cerium</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>32</volume><issue>33</issue><spage>335401</spage><pages>335401-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4-oC4-tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1-2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less steep than the 670 K (GPa)−1 reported previously, and find the oC4 → tI2 phase boundary to lie at higher temperatures than previously found. We also find variations as large as 2-3 GPa in the transition pressures at which the oC4 → tI2 transition takes place at a given temperature, the reasons for which remain unclear. Finally, we find no evidence that the α-cF4 → tI2 is not second order at all temperatures up to 820 K.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32174564</pmid><doi>10.1088/1361-648X/ab7f02</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7797-9806</orcidid><orcidid>https://orcid.org/0000-0003-4343-344X</orcidid><orcidid>https://orcid.org/0000-0003-0189-4221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2020-08, Vol.32 (33), p.335401 |
issn | 0953-8984 1361-648X 1361-648X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_648X_ab7f02 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | cerium Experimental Physics Experimentell fysik high pressure phase diagram |
title | The high-pressure, high-temperature phase diagram of cerium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20high-pressure,%20high-temperature%20phase%20diagram%20of%20cerium&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Munro,%20K%20A&rft.date=2020-08-05&rft.volume=32&rft.issue=33&rft.spage=335401&rft.pages=335401-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab7f02&rft_dat=%3Cproquest_cross%3E2377678039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-92cc89dfa92e06dd26aa56204b0f5dad06b3718733c2ebd12716bde922e17cd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377678039&rft_id=info:pmid/32174564&rfr_iscdi=true |