Loading…
Robust massless Dirac fermions in hydro-/halogenated trigonal borophene
The striking electronic characteristics of graphene trigger immense interests and continual explora-tions for new two-dimensional (2D) Dirac materials. By first-principles electronic structure calculations, we here identify a new set of 2D semimetals in hydro-/halogen embedding trigonal borophene, n...
Saved in:
Published in: | Journal of physics. Condensed matter 2024-10, Vol.36 (50), p.505304 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The striking electronic characteristics of graphene trigger immense interests and continual explora-tions for new two-dimensional (2D) Dirac materials. By first-principles electronic structure calculations, we here identify a new set of 2D semimetals in hydro-/halogen embedding trigonal
borophene, namely
-B
X (X = H, F, Cl), that possess the graphene-like massless Dirac fermions. Owing to the central hollow B atoms strongly hybridized to the hydro-/halogen adatoms, adequate charge transfer is induced from the hollow B to the basal honeycomb B sublattice, which electronically stabilizes the 2D sheet and decisively endows a robust (intrinsic and stable-against-strains) graphene-like Dirac cone state. The predicted high energetic, dynamic and thermal stabilities, combined with pretty geometrical match to the commonly utilized Ag/Au(111) substrates, support their experimental viabilities. Our prediction provides a new branch for exploring the intriguing 2D Dirac fermionic states in versatile boron element and its derivatives. |
---|---|
ISSN: | 0953-8984 1361-648X 1361-648X |
DOI: | 10.1088/1361-648X/ad7e73 |