Loading…
Fractional iterative variational mode decomposition and its application in fault diagnosis of rotating machinery
Variational mode decomposition (VMD), a recently developed adaptive mode decomposition technique, has attracted much attention in various fields. However, due to the assumption that the obtained intrinsic mode functions should be band-limited and separable in the Fourier domain, VMD has experienced...
Saved in:
Published in: | Measurement science & technology 2019-12, Vol.30 (12), p.125009 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Variational mode decomposition (VMD), a recently developed adaptive mode decomposition technique, has attracted much attention in various fields. However, due to the assumption that the obtained intrinsic mode functions should be band-limited and separable in the Fourier domain, VMD has experienced many obstacles when processing wideband nonstationary signals. In this paper, a new method named fractional iterative variational mode decomposition (FrIVMD) is proposed for the decomposition of a multicomponent linear frequency modulation signal. By accurately estimating the chirp rate of the linear frequency modulation (LFM) component, the original signal is mapped to the fractional Fourier domain by the fractional Fourier transform (FRFT), where the corresponding LFM component is narrowly banded. Then, the conventional VMD is applied to separate the components. Finally, the signal mode in the time domain is obtained by the inverse FRFT. Numerical and real-world vibration signals are employed to validate the effectiveness of the FrIVMD technique. The results prove that the proposed method performs well for noisy signals and even signals containing weak components. |
---|---|
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/1361-6501/ab3361 |