Loading…
Holographic astigmatic particle tracking velocimetry (HAPTV)
The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale...
Saved in:
Published in: | Measurement science & technology 2020-06, Vol.31 (6), p.65202 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3 |
container_end_page | |
container_issue | 6 |
container_start_page | 65202 |
container_title | Measurement science & technology |
container_volume | 31 |
creator | Zhou, Zhou S, Santosh Kumar Mallery, Kevin Jiang, Wensheng Hong, Jiarong |
description | The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications. |
doi_str_mv | 10.1088/1361-6501/ab7281 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ab7281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mstab7281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMoWFfvHntTwbrvJW3agJdlUSss6GH1GtI0rV3bbUnqwv57U1Y86WmGx8zwPkIuEe4QsmyOjGPEE8C5KlKa4REJfk_HJACRpBFQxk7JmXMbAEhBiIDc533b11YNH40OlRubulOjt4OyXloTjlbpz2ZbhzvT9rrpzGj34XW-eF2_35yTk0q1zlz86Iy8PT6sl3m0enl6Xi5WkWZIx6gURWGK2FAueMyyFCsmgMZQoqgEw1ggplRlBRiBcZWVyDHWoHnpbapLxWYEDrva9s5ZU8nBNp2ye4kgJ3o5ocoJVR7ofeXqUGn6QW76L7v1D8rOjZL5oASeUKByKCufvP0j-e_wN7e4ZwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><source>Institute of Physics</source><creator>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</creator><creatorcontrib>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</creatorcontrib><description>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ab7281</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>3D flow measurements ; holography ; particle tracking velocimetry and astigmatism</subject><ispartof>Measurement science & technology, 2020-06, Vol.31 (6), p.65202</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</citedby><cites>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</cites><orcidid>0000-0001-7860-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>S, Santosh Kumar</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Jiang, Wensheng</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><title>Measurement science & technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</description><subject>3D flow measurements</subject><subject>holography</subject><subject>particle tracking velocimetry and astigmatism</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMoWFfvHntTwbrvJW3agJdlUSss6GH1GtI0rV3bbUnqwv57U1Y86WmGx8zwPkIuEe4QsmyOjGPEE8C5KlKa4REJfk_HJACRpBFQxk7JmXMbAEhBiIDc533b11YNH40OlRubulOjt4OyXloTjlbpz2ZbhzvT9rrpzGj34XW-eF2_35yTk0q1zlz86Iy8PT6sl3m0enl6Xi5WkWZIx6gURWGK2FAueMyyFCsmgMZQoqgEw1ggplRlBRiBcZWVyDHWoHnpbapLxWYEDrva9s5ZU8nBNp2ye4kgJ3o5ocoJVR7ofeXqUGn6QW76L7v1D8rOjZL5oASeUKByKCufvP0j-e_wN7e4ZwE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhou, Zhou</creator><creator>S, Santosh Kumar</creator><creator>Mallery, Kevin</creator><creator>Jiang, Wensheng</creator><creator>Hong, Jiarong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7860-2181</orcidid></search><sort><creationdate>20200601</creationdate><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><author>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D flow measurements</topic><topic>holography</topic><topic>particle tracking velocimetry and astigmatism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>S, Santosh Kumar</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Jiang, Wensheng</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhou</au><au>S, Santosh Kumar</au><au>Mallery, Kevin</au><au>Jiang, Wensheng</au><au>Hong, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic astigmatic particle tracking velocimetry (HAPTV)</atitle><jtitle>Measurement science & technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>65202</spage><pages>65202-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6501/ab7281</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7860-2181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2020-06, Vol.31 (6), p.65202 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_ab7281 |
source | Institute of Physics |
subjects | 3D flow measurements holography particle tracking velocimetry and astigmatism |
title | Holographic astigmatic particle tracking velocimetry (HAPTV) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20astigmatic%20particle%20tracking%20velocimetry%20(HAPTV)&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Zhou,%20Zhou&rft.date=2020-06-01&rft.volume=31&rft.issue=6&rft.spage=65202&rft.pages=65202-&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/1361-6501/ab7281&rft_dat=%3Ciop_cross%3Emstab7281%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |