Loading…

Holographic astigmatic particle tracking velocimetry (HAPTV)

The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2020-06, Vol.31 (6), p.65202
Main Authors: Zhou, Zhou, S, Santosh Kumar, Mallery, Kevin, Jiang, Wensheng, Hong, Jiarong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3
cites cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3
container_end_page
container_issue 6
container_start_page 65202
container_title Measurement science & technology
container_volume 31
creator Zhou, Zhou
S, Santosh Kumar
Mallery, Kevin
Jiang, Wensheng
Hong, Jiarong
description The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.
doi_str_mv 10.1088/1361-6501/ab7281
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ab7281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mstab7281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMoWFfvHntTwbrvJW3agJdlUSss6GH1GtI0rV3bbUnqwv57U1Y86WmGx8zwPkIuEe4QsmyOjGPEE8C5KlKa4REJfk_HJACRpBFQxk7JmXMbAEhBiIDc533b11YNH40OlRubulOjt4OyXloTjlbpz2ZbhzvT9rrpzGj34XW-eF2_35yTk0q1zlz86Iy8PT6sl3m0enl6Xi5WkWZIx6gURWGK2FAueMyyFCsmgMZQoqgEw1ggplRlBRiBcZWVyDHWoHnpbapLxWYEDrva9s5ZU8nBNp2ye4kgJ3o5ocoJVR7ofeXqUGn6QW76L7v1D8rOjZL5oASeUKByKCufvP0j-e_wN7e4ZwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><source>Institute of Physics</source><creator>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</creator><creatorcontrib>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</creatorcontrib><description>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ab7281</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>3D flow measurements ; holography ; particle tracking velocimetry and astigmatism</subject><ispartof>Measurement science &amp; technology, 2020-06, Vol.31 (6), p.65202</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</citedby><cites>FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</cites><orcidid>0000-0001-7860-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>S, Santosh Kumar</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Jiang, Wensheng</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><title>Measurement science &amp; technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</description><subject>3D flow measurements</subject><subject>holography</subject><subject>particle tracking velocimetry and astigmatism</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMoWFfvHntTwbrvJW3agJdlUSss6GH1GtI0rV3bbUnqwv57U1Y86WmGx8zwPkIuEe4QsmyOjGPEE8C5KlKa4REJfk_HJACRpBFQxk7JmXMbAEhBiIDc533b11YNH40OlRubulOjt4OyXloTjlbpz2ZbhzvT9rrpzGj34XW-eF2_35yTk0q1zlz86Iy8PT6sl3m0enl6Xi5WkWZIx6gURWGK2FAueMyyFCsmgMZQoqgEw1ggplRlBRiBcZWVyDHWoHnpbapLxWYEDrva9s5ZU8nBNp2ye4kgJ3o5ocoJVR7ofeXqUGn6QW76L7v1D8rOjZL5oASeUKByKCufvP0j-e_wN7e4ZwE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhou, Zhou</creator><creator>S, Santosh Kumar</creator><creator>Mallery, Kevin</creator><creator>Jiang, Wensheng</creator><creator>Hong, Jiarong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7860-2181</orcidid></search><sort><creationdate>20200601</creationdate><title>Holographic astigmatic particle tracking velocimetry (HAPTV)</title><author>Zhou, Zhou ; S, Santosh Kumar ; Mallery, Kevin ; Jiang, Wensheng ; Hong, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D flow measurements</topic><topic>holography</topic><topic>particle tracking velocimetry and astigmatism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>S, Santosh Kumar</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Jiang, Wensheng</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhou</au><au>S, Santosh Kumar</au><au>Mallery, Kevin</au><au>Jiang, Wensheng</au><au>Hong, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic astigmatic particle tracking velocimetry (HAPTV)</atitle><jtitle>Measurement science &amp; technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>65202</spage><pages>65202-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>The formation of twin images in digital inline holography (DIH) prevents the placement of the focal plane in the center of a sample volume for DIH-based particle tracking velocimetry (DIH-PTV) with a single camera. As a result, it is challenging to apply DIH-PTV for flow measurements in large-scale laboratory facilities or many field applications where it would otherwise be desirable due to the low cost and compact setup. Here we introduce holographic astigmatic PTV (HAPTV) by inserting a cylindrical lens in the optical setup of DIH-PTV, generating distorted holograms. Such distortion is subsequently utilized in a customized reconstruction algorithm to distinguish tracers positioned on different sides of the focal plane which can in turn be placed in the middle of a sample volume. Our HAPTV approach is calibrated under high (1 µm pixel−1) and low (10 µm pixel−1) magnifications with an error standard deviation of 4.2 µm (one particle diameter) and 120.7 µm (~5 times the particle diameter), respectively. We compare the velocity field of a laminar jet flow obtained using HAPTV and conventional PIV to illustrate the accuracy of the technique when applied to practical flow measurement applications. The work demonstrates that HAPTV improves upon the depth of field of conventional astigmatic PTV and enables the implementation of DIH-based PTV for in situ applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6501/ab7281</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7860-2181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2020-06, Vol.31 (6), p.65202
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ab7281
source Institute of Physics
subjects 3D flow measurements
holography
particle tracking velocimetry and astigmatism
title Holographic astigmatic particle tracking velocimetry (HAPTV)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20astigmatic%20particle%20tracking%20velocimetry%20(HAPTV)&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Zhou,%20Zhou&rft.date=2020-06-01&rft.volume=31&rft.issue=6&rft.spage=65202&rft.pages=65202-&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/1361-6501/ab7281&rft_dat=%3Ciop_cross%3Emstab7281%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-d9bbeb4e269643871f390240d19f931491172a8b0e914f8d1614c0c6d8d17cda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true