Loading…

PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network

Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of o...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2023-08, Vol.34 (8), p.85402
Main Authors: Zhu, Xinjun, Han, Zhiqiang, Zhang, Zhizhi, Song, Limei, Wang, Hongyi, Guo, Qinghua
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3
cites cdi_FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3
container_end_page
container_issue 8
container_start_page 85402
container_title Measurement science & technology
container_volume 34
creator Zhu, Xinjun
Han, Zhiqiang
Zhang, Zhizhi
Song, Limei
Wang, Hongyi
Guo, Qinghua
description Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of objects for the structured light images in complex scenes. In this paper, we design a parallel CNN-transformer network (PCTNet), which consists of a CNN branch, a transformer branch, a bidirectional feature fusion module (BFFM), and a cross-feature multi-scale fusion module (CFMS). The BFFM and CFMS modules are proposed to fuse local and global features of the double branches in order to achieve better depth estimation. Comprehensive experiments are conducted to evaluate our model on four structured light datasets, i.e. our established simulated fringe and speckle structured light datasets, and public real fringe and speckle structured light datasets. Experiments demonstrate that the proposed PCTNet is an effective architecture, achieving state-of-the-art performance in both qualitative and quantitative evaluation.
doi_str_mv 10.1088/1361-6501/acd136
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_acd136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_acd136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqFw5-gXCF3HiZ1wQxFQpCpwKOfIP-s2kCaV7ari7UlUxGk0o5nV6iPknsEDg7JcMi5YKgpgS2XsZC5I8h9dkgSqQqaQcX5NbkL4AgAJVZUQ81FvGoyP1OIh7iiG2O1V7MaBOj_uaeiGbY80RH808ejR0r7b7iKdSlukp26aKHpQXvU99rRumjR6NQQ3-j16OmA8jf77llw51Qe8-9MF-Xx53tSrdP3--lY_rVOT5TymWnIOCktbZFooyCueaTR5ybWzwsncaCulrawT2gkUrMpRopMgQJeFRMsXBM53jR9D8Ojag58e9T8tg3aG1M5E2plIe4bEfwEn4Vzn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network</title><source>Institute of Physics</source><creator>Zhu, Xinjun ; Han, Zhiqiang ; Zhang, Zhizhi ; Song, Limei ; Wang, Hongyi ; Guo, Qinghua</creator><creatorcontrib>Zhu, Xinjun ; Han, Zhiqiang ; Zhang, Zhizhi ; Song, Limei ; Wang, Hongyi ; Guo, Qinghua</creatorcontrib><description>Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of objects for the structured light images in complex scenes. In this paper, we design a parallel CNN-transformer network (PCTNet), which consists of a CNN branch, a transformer branch, a bidirectional feature fusion module (BFFM), and a cross-feature multi-scale fusion module (CFMS). The BFFM and CFMS modules are proposed to fuse local and global features of the double branches in order to achieve better depth estimation. Comprehensive experiments are conducted to evaluate our model on four structured light datasets, i.e. our established simulated fringe and speckle structured light datasets, and public real fringe and speckle structured light datasets. Experiments demonstrate that the proposed PCTNet is an effective architecture, achieving state-of-the-art performance in both qualitative and quantitative evaluation.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/acd136</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2023-08, Vol.34 (8), p.85402</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3</citedby><cites>FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3</cites><orcidid>0000-0002-8952-7444 ; 0000-0003-1753-5151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Xinjun</creatorcontrib><creatorcontrib>Han, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Zhizhi</creatorcontrib><creatorcontrib>Song, Limei</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Guo, Qinghua</creatorcontrib><title>PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network</title><title>Measurement science &amp; technology</title><description>Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of objects for the structured light images in complex scenes. In this paper, we design a parallel CNN-transformer network (PCTNet), which consists of a CNN branch, a transformer branch, a bidirectional feature fusion module (BFFM), and a cross-feature multi-scale fusion module (CFMS). The BFFM and CFMS modules are proposed to fuse local and global features of the double branches in order to achieve better depth estimation. Comprehensive experiments are conducted to evaluate our model on four structured light datasets, i.e. our established simulated fringe and speckle structured light datasets, and public real fringe and speckle structured light datasets. Experiments demonstrate that the proposed PCTNet is an effective architecture, achieving state-of-the-art performance in both qualitative and quantitative evaluation.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqFw5-gXCF3HiZ1wQxFQpCpwKOfIP-s2kCaV7ari7UlUxGk0o5nV6iPknsEDg7JcMi5YKgpgS2XsZC5I8h9dkgSqQqaQcX5NbkL4AgAJVZUQ81FvGoyP1OIh7iiG2O1V7MaBOj_uaeiGbY80RH808ejR0r7b7iKdSlukp26aKHpQXvU99rRumjR6NQQ3-j16OmA8jf77llw51Qe8-9MF-Xx53tSrdP3--lY_rVOT5TymWnIOCktbZFooyCueaTR5ybWzwsncaCulrawT2gkUrMpRopMgQJeFRMsXBM53jR9D8Ojag58e9T8tg3aG1M5E2plIe4bEfwEn4Vzn</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhu, Xinjun</creator><creator>Han, Zhiqiang</creator><creator>Zhang, Zhizhi</creator><creator>Song, Limei</creator><creator>Wang, Hongyi</creator><creator>Guo, Qinghua</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8952-7444</orcidid><orcidid>https://orcid.org/0000-0003-1753-5151</orcidid></search><sort><creationdate>20230801</creationdate><title>PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network</title><author>Zhu, Xinjun ; Han, Zhiqiang ; Zhang, Zhizhi ; Song, Limei ; Wang, Hongyi ; Guo, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinjun</creatorcontrib><creatorcontrib>Han, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Zhizhi</creatorcontrib><creatorcontrib>Song, Limei</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Guo, Qinghua</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinjun</au><au>Han, Zhiqiang</au><au>Zhang, Zhizhi</au><au>Song, Limei</au><au>Wang, Hongyi</au><au>Guo, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>85402</spage><pages>85402-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of objects for the structured light images in complex scenes. In this paper, we design a parallel CNN-transformer network (PCTNet), which consists of a CNN branch, a transformer branch, a bidirectional feature fusion module (BFFM), and a cross-feature multi-scale fusion module (CFMS). The BFFM and CFMS modules are proposed to fuse local and global features of the double branches in order to achieve better depth estimation. Comprehensive experiments are conducted to evaluate our model on four structured light datasets, i.e. our established simulated fringe and speckle structured light datasets, and public real fringe and speckle structured light datasets. Experiments demonstrate that the proposed PCTNet is an effective architecture, achieving state-of-the-art performance in both qualitative and quantitative evaluation.</abstract><doi>10.1088/1361-6501/acd136</doi><orcidid>https://orcid.org/0000-0002-8952-7444</orcidid><orcidid>https://orcid.org/0000-0003-1753-5151</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2023-08, Vol.34 (8), p.85402
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_acd136
source Institute of Physics
title PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCTNet:%20depth%20estimation%20from%20single%20structured%20light%20image%20with%20a%20parallel%20CNN-transformer%20network&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Zhu,%20Xinjun&rft.date=2023-08-01&rft.volume=34&rft.issue=8&rft.spage=85402&rft.pages=85402-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/acd136&rft_dat=%3Ccrossref%3E10_1088_1361_6501_acd136%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-b7330ae8d52b6a04932bec483bfd6f74cbd77d9df6bf6e6194e7ef7060b857ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true