Loading…

An intensity-enhanced LiDAR SLAM for unstructured environments

Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and loca...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2023-12, Vol.34 (12), p.125120
Main Authors: Dai, Zhiqiang, Zhou, Jingyi, Li, Tianci, Yao, Hexiong, Sun, Shihai, Zhu, Xiangwei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3
cites cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3
container_end_page
container_issue 12
container_start_page 125120
container_title Measurement science & technology
container_volume 34
creator Dai, Zhiqiang
Zhou, Jingyi
Li, Tianci
Yao, Hexiong
Sun, Shihai
Zhu, Xiangwei
description Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.
doi_str_mv 10.1088/1361-6501/acf38d
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_acf38d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_acf38d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</originalsourceid><addsrcrecordid>eNo9z0tLxDAUBeAgCtbRvcv-gTg3uX2kG6GMOgoVwcc6pOkNVpxUklSYf69lxNWBc-DAx9ilgCsBSq0FVoJXJYi1sQ7VcMSy_-qYZdCUNQeJeMrOYvwAgBqaJmPXrc9Hn8jHMe05-XfjLQ15N960z_lL1z7mbgr57GMKs01z-N3If49h8jvyKZ6zE2c-I1385Yq93d2-bu5597R92LQdt7LAxAsDolKl7EEZRbZAU0g0VpWNxcr2fS8MklQOayGIsKbeORqoHBAKg7XBFYPDrw1TjIGc_grjzoS9FqAXv16wesHqgx9_AJixTyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</creator><creatorcontrib>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</creatorcontrib><description>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/acf38d</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2023-12, Vol.34 (12), p.125120</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</citedby><cites>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</cites><orcidid>0009-0005-6397-1976 ; 0009-0007-7889-7689 ; 0009-0004-7253-237X ; 0000-0002-6846-2776 ; 0000-0002-8956-0711 ; 0000-0003-3720-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dai, Zhiqiang</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Li, Tianci</creatorcontrib><creatorcontrib>Yao, Hexiong</creatorcontrib><creatorcontrib>Sun, Shihai</creatorcontrib><creatorcontrib>Zhu, Xiangwei</creatorcontrib><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><title>Measurement science &amp; technology</title><description>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9z0tLxDAUBeAgCtbRvcv-gTg3uX2kG6GMOgoVwcc6pOkNVpxUklSYf69lxNWBc-DAx9ilgCsBSq0FVoJXJYi1sQ7VcMSy_-qYZdCUNQeJeMrOYvwAgBqaJmPXrc9Hn8jHMe05-XfjLQ15N960z_lL1z7mbgr57GMKs01z-N3If49h8jvyKZ6zE2c-I1385Yq93d2-bu5597R92LQdt7LAxAsDolKl7EEZRbZAU0g0VpWNxcr2fS8MklQOayGIsKbeORqoHBAKg7XBFYPDrw1TjIGc_grjzoS9FqAXv16wesHqgx9_AJixTyY</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Dai, Zhiqiang</creator><creator>Zhou, Jingyi</creator><creator>Li, Tianci</creator><creator>Yao, Hexiong</creator><creator>Sun, Shihai</creator><creator>Zhu, Xiangwei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6397-1976</orcidid><orcidid>https://orcid.org/0009-0007-7889-7689</orcidid><orcidid>https://orcid.org/0009-0004-7253-237X</orcidid><orcidid>https://orcid.org/0000-0002-6846-2776</orcidid><orcidid>https://orcid.org/0000-0002-8956-0711</orcidid><orcidid>https://orcid.org/0000-0003-3720-1757</orcidid></search><sort><creationdate>20231201</creationdate><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><author>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhiqiang</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Li, Tianci</creatorcontrib><creatorcontrib>Yao, Hexiong</creatorcontrib><creatorcontrib>Sun, Shihai</creatorcontrib><creatorcontrib>Zhu, Xiangwei</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhiqiang</au><au>Zhou, Jingyi</au><au>Li, Tianci</au><au>Yao, Hexiong</au><au>Sun, Shihai</au><au>Zhu, Xiangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intensity-enhanced LiDAR SLAM for unstructured environments</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>125120</spage><pages>125120-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</abstract><doi>10.1088/1361-6501/acf38d</doi><orcidid>https://orcid.org/0009-0005-6397-1976</orcidid><orcidid>https://orcid.org/0009-0007-7889-7689</orcidid><orcidid>https://orcid.org/0009-0004-7253-237X</orcidid><orcidid>https://orcid.org/0000-0002-6846-2776</orcidid><orcidid>https://orcid.org/0000-0002-8956-0711</orcidid><orcidid>https://orcid.org/0000-0003-3720-1757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2023-12, Vol.34 (12), p.125120
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_acf38d
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title An intensity-enhanced LiDAR SLAM for unstructured environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intensity-enhanced%20LiDAR%20SLAM%20for%20unstructured%20environments&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Dai,%20Zhiqiang&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=125120&rft.pages=125120-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/acf38d&rft_dat=%3Ccrossref%3E10_1088_1361_6501_acf38d%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true