Loading…
An intensity-enhanced LiDAR SLAM for unstructured environments
Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and loca...
Saved in:
Published in: | Measurement science & technology 2023-12, Vol.34 (12), p.125120 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3 |
container_end_page | |
container_issue | 12 |
container_start_page | 125120 |
container_title | Measurement science & technology |
container_volume | 34 |
creator | Dai, Zhiqiang Zhou, Jingyi Li, Tianci Yao, Hexiong Sun, Shihai Zhu, Xiangwei |
description | Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency. |
doi_str_mv | 10.1088/1361-6501/acf38d |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_acf38d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_acf38d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</originalsourceid><addsrcrecordid>eNo9z0tLxDAUBeAgCtbRvcv-gTg3uX2kG6GMOgoVwcc6pOkNVpxUklSYf69lxNWBc-DAx9ilgCsBSq0FVoJXJYi1sQ7VcMSy_-qYZdCUNQeJeMrOYvwAgBqaJmPXrc9Hn8jHMe05-XfjLQ15N960z_lL1z7mbgr57GMKs01z-N3If49h8jvyKZ6zE2c-I1385Yq93d2-bu5597R92LQdt7LAxAsDolKl7EEZRbZAU0g0VpWNxcr2fS8MklQOayGIsKbeORqoHBAKg7XBFYPDrw1TjIGc_grjzoS9FqAXv16wesHqgx9_AJixTyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</creator><creatorcontrib>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</creatorcontrib><description>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/acf38d</identifier><language>eng</language><ispartof>Measurement science & technology, 2023-12, Vol.34 (12), p.125120</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</citedby><cites>FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</cites><orcidid>0009-0005-6397-1976 ; 0009-0007-7889-7689 ; 0009-0004-7253-237X ; 0000-0002-6846-2776 ; 0000-0002-8956-0711 ; 0000-0003-3720-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dai, Zhiqiang</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Li, Tianci</creatorcontrib><creatorcontrib>Yao, Hexiong</creatorcontrib><creatorcontrib>Sun, Shihai</creatorcontrib><creatorcontrib>Zhu, Xiangwei</creatorcontrib><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><title>Measurement science & technology</title><description>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9z0tLxDAUBeAgCtbRvcv-gTg3uX2kG6GMOgoVwcc6pOkNVpxUklSYf69lxNWBc-DAx9ilgCsBSq0FVoJXJYi1sQ7VcMSy_-qYZdCUNQeJeMrOYvwAgBqaJmPXrc9Hn8jHMe05-XfjLQ15N960z_lL1z7mbgr57GMKs01z-N3If49h8jvyKZ6zE2c-I1385Yq93d2-bu5597R92LQdt7LAxAsDolKl7EEZRbZAU0g0VpWNxcr2fS8MklQOayGIsKbeORqoHBAKg7XBFYPDrw1TjIGc_grjzoS9FqAXv16wesHqgx9_AJixTyY</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Dai, Zhiqiang</creator><creator>Zhou, Jingyi</creator><creator>Li, Tianci</creator><creator>Yao, Hexiong</creator><creator>Sun, Shihai</creator><creator>Zhu, Xiangwei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6397-1976</orcidid><orcidid>https://orcid.org/0009-0007-7889-7689</orcidid><orcidid>https://orcid.org/0009-0004-7253-237X</orcidid><orcidid>https://orcid.org/0000-0002-6846-2776</orcidid><orcidid>https://orcid.org/0000-0002-8956-0711</orcidid><orcidid>https://orcid.org/0000-0003-3720-1757</orcidid></search><sort><creationdate>20231201</creationdate><title>An intensity-enhanced LiDAR SLAM for unstructured environments</title><author>Dai, Zhiqiang ; Zhou, Jingyi ; Li, Tianci ; Yao, Hexiong ; Sun, Shihai ; Zhu, Xiangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhiqiang</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Li, Tianci</creatorcontrib><creatorcontrib>Yao, Hexiong</creatorcontrib><creatorcontrib>Sun, Shihai</creatorcontrib><creatorcontrib>Zhu, Xiangwei</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhiqiang</au><au>Zhou, Jingyi</au><au>Li, Tianci</au><au>Yao, Hexiong</au><au>Sun, Shihai</au><au>Zhu, Xiangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intensity-enhanced LiDAR SLAM for unstructured environments</atitle><jtitle>Measurement science & technology</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>125120</spage><pages>125120-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.</abstract><doi>10.1088/1361-6501/acf38d</doi><orcidid>https://orcid.org/0009-0005-6397-1976</orcidid><orcidid>https://orcid.org/0009-0007-7889-7689</orcidid><orcidid>https://orcid.org/0009-0004-7253-237X</orcidid><orcidid>https://orcid.org/0000-0002-6846-2776</orcidid><orcidid>https://orcid.org/0000-0002-8956-0711</orcidid><orcidid>https://orcid.org/0000-0003-3720-1757</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2023-12, Vol.34 (12), p.125120 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_acf38d |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | An intensity-enhanced LiDAR SLAM for unstructured environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intensity-enhanced%20LiDAR%20SLAM%20for%20unstructured%20environments&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Dai,%20Zhiqiang&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=125120&rft.pages=125120-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/acf38d&rft_dat=%3Ccrossref%3E10_1088_1361_6501_acf38d%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-4a016852b08a8ec43a423ac859c36cbbb1a3e28f3711ee37ebffede5d304a37a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |