Loading…
Blade fouling fault detection based on shaft orbit generative adversarial network
To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for...
Saved in:
Published in: | Measurement science & technology 2024-08, Vol.35 (8), p.86119 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33 |
container_end_page | |
container_issue | 8 |
container_start_page | 86119 |
container_title | Measurement science & technology |
container_volume | 35 |
creator | Huang, Xin Ma, Jun Shao, Huajin Chen, Wenwu Qu, Dingrong Pan, Long Zhang, Weiya |
description | To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery. |
doi_str_mv | 10.1088/1361-6501/ad4732 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad4732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad4732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWEf3LvMH6rw0bZMsdfALBkTQdXhpXsZqbSXJjPjvnTLi6h7u4sK5jF0KuBKg9VLIVpRtA2KJvlayOmLFf3XMCjCNKqGS8pSdpfQOAAqMKdjzzYCeeJi2Qz9ueMDtkLmnTF3up5E7TOT5HtIbhsyn6PrMNzRSxNzviKPfUUwYexz4SPl7ih_n7CTgkOjiLxfs9e72ZfVQrp_uH1fX67ITps1l61EpEk5LJRUojy3uoSJtPDUiOKqN67z2rtaiVgSqUaIV3htH2kGQcsHgsNvFKaVIwX7F_hPjjxVg50vs7G9nf3u4RP4CzTRVuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><source>Institute of Physics</source><creator>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</creator><creatorcontrib>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</creatorcontrib><description>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad4732</identifier><language>eng</language><ispartof>Measurement science & technology, 2024-08, Vol.35 (8), p.86119</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</cites><orcidid>0000-0001-5987-8625 ; 0000-0002-2313-8104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Shao, Huajin</creatorcontrib><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Zhang, Weiya</creatorcontrib><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><title>Measurement science & technology</title><description>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoWEf3LvMH6rw0bZMsdfALBkTQdXhpXsZqbSXJjPjvnTLi6h7u4sK5jF0KuBKg9VLIVpRtA2KJvlayOmLFf3XMCjCNKqGS8pSdpfQOAAqMKdjzzYCeeJi2Qz9ueMDtkLmnTF3up5E7TOT5HtIbhsyn6PrMNzRSxNzviKPfUUwYexz4SPl7ih_n7CTgkOjiLxfs9e72ZfVQrp_uH1fX67ITps1l61EpEk5LJRUojy3uoSJtPDUiOKqN67z2rtaiVgSqUaIV3htH2kGQcsHgsNvFKaVIwX7F_hPjjxVg50vs7G9nf3u4RP4CzTRVuQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Xin</creator><creator>Ma, Jun</creator><creator>Shao, Huajin</creator><creator>Chen, Wenwu</creator><creator>Qu, Dingrong</creator><creator>Pan, Long</creator><creator>Zhang, Weiya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5987-8625</orcidid><orcidid>https://orcid.org/0000-0002-2313-8104</orcidid></search><sort><creationdate>20240801</creationdate><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><author>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Shao, Huajin</creatorcontrib><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Zhang, Weiya</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin</au><au>Ma, Jun</au><au>Shao, Huajin</au><au>Chen, Wenwu</au><au>Qu, Dingrong</au><au>Pan, Long</au><au>Zhang, Weiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blade fouling fault detection based on shaft orbit generative adversarial network</atitle><jtitle>Measurement science & technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>86119</spage><pages>86119-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</abstract><doi>10.1088/1361-6501/ad4732</doi><orcidid>https://orcid.org/0000-0001-5987-8625</orcidid><orcidid>https://orcid.org/0000-0002-2313-8104</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2024-08, Vol.35 (8), p.86119 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_ad4732 |
source | Institute of Physics |
title | Blade fouling fault detection based on shaft orbit generative adversarial network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blade%20fouling%20fault%20detection%20based%20on%20shaft%20orbit%20generative%20adversarial%20network&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Huang,%20Xin&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=86119&rft.pages=86119-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad4732&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad4732%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |