Loading…

MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network

Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing r...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2024-12, Vol.35 (12), p.126136
Main Authors: Deng, Linfeng, Zhao, Cheng, Wang, Xiaoqiang, Wang, Guojun, Qiu, Ruiyu
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c126t-20a2609aef0f6d9ef1bd6adb0e3199f25c1ebc4c2c5affe2887b4bb30b5c0c8b3
container_end_page
container_issue 12
container_start_page 126136
container_title Measurement science & technology
container_volume 35
creator Deng, Linfeng
Zhao, Cheng
Wang, Xiaoqiang
Wang, Guojun
Qiu, Ruiyu
description Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing rolling bearing faults in noisy environments. The MRNet model features multiple convolution branches, each of which utilizes kernels with different sizes to capture fault information at different scales, so this multi-scale framework excels at extracting both local and global information from raw fault vibration signals, enhancing fault recognition accuracy. Additionally, we introduce residual blocks to maintain global information during the convolution operations, preventing useful feature information loss. To further improve global feature extraction capability of the network model, a lightweight Transformer module is developed and incorporated, compensating for some global information that the network’s front-end might fail to capture. The effectiveness of MRNet is validated by using two publicly available rolling bearing fault datasets and our own experiment dataset. The verification results indicate that MRNet outperforms other comparative models, particularly for complex fault diagnosis in noisy environments.
doi_str_mv 10.1088/1361-6501/ad78f1
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad78f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad78f1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-20a2609aef0f6d9ef1bd6adb0e3199f25c1ebc4c2c5affe2887b4bb30b5c0c8b3</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKt7l3mBsV-Szk_cSVErVAXR9ZCfLyWaJpJMK317O1RcHe7lcheHkGsGNwy6bsZEw6qmBjZTtu0cOyGT_-qUTEDWbQVciHNyUconALQg5YSk57cXHG5pTiH4uKYaVR7p1DYM1Hq1jqn4Qn2kMfmypxh3Pqe4wThQrQpamiLdHMa-KkYFpBmLt1sVqElxl8J28CkeUsThJ-WvS3LmVCh49ccp-Xi4f18sq9Xr49PiblUZxpuh4qB4A1KhA9dYiY5p2yirAQWT0vHaMNRmbriplXPIu67Vc60F6NqA6bSYEjj-mpxKyej67-w3Ku97Bv0orB_t9KOd_ihM_AIa_GLZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Deng, Linfeng ; Zhao, Cheng ; Wang, Xiaoqiang ; Wang, Guojun ; Qiu, Ruiyu</creator><creatorcontrib>Deng, Linfeng ; Zhao, Cheng ; Wang, Xiaoqiang ; Wang, Guojun ; Qiu, Ruiyu</creatorcontrib><description>Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing rolling bearing faults in noisy environments. The MRNet model features multiple convolution branches, each of which utilizes kernels with different sizes to capture fault information at different scales, so this multi-scale framework excels at extracting both local and global information from raw fault vibration signals, enhancing fault recognition accuracy. Additionally, we introduce residual blocks to maintain global information during the convolution operations, preventing useful feature information loss. To further improve global feature extraction capability of the network model, a lightweight Transformer module is developed and incorporated, compensating for some global information that the network’s front-end might fail to capture. The effectiveness of MRNet is validated by using two publicly available rolling bearing fault datasets and our own experiment dataset. The verification results indicate that MRNet outperforms other comparative models, particularly for complex fault diagnosis in noisy environments.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad78f1</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-12, Vol.35 (12), p.126136</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-20a2609aef0f6d9ef1bd6adb0e3199f25c1ebc4c2c5affe2887b4bb30b5c0c8b3</cites><orcidid>0009-0009-6927-5866 ; 0009-0005-7977-984X ; 0009-0007-4518-8579 ; 0000-0001-8813-4692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Wang, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Qiu, Ruiyu</creatorcontrib><title>MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network</title><title>Measurement science &amp; technology</title><description>Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing rolling bearing faults in noisy environments. The MRNet model features multiple convolution branches, each of which utilizes kernels with different sizes to capture fault information at different scales, so this multi-scale framework excels at extracting both local and global information from raw fault vibration signals, enhancing fault recognition accuracy. Additionally, we introduce residual blocks to maintain global information during the convolution operations, preventing useful feature information loss. To further improve global feature extraction capability of the network model, a lightweight Transformer module is developed and incorporated, compensating for some global information that the network’s front-end might fail to capture. The effectiveness of MRNet is validated by using two publicly available rolling bearing fault datasets and our own experiment dataset. The verification results indicate that MRNet outperforms other comparative models, particularly for complex fault diagnosis in noisy environments.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWKt7l3mBsV-Szk_cSVErVAXR9ZCfLyWaJpJMK317O1RcHe7lcheHkGsGNwy6bsZEw6qmBjZTtu0cOyGT_-qUTEDWbQVciHNyUconALQg5YSk57cXHG5pTiH4uKYaVR7p1DYM1Hq1jqn4Qn2kMfmypxh3Pqe4wThQrQpamiLdHMa-KkYFpBmLt1sVqElxl8J28CkeUsThJ-WvS3LmVCh49ccp-Xi4f18sq9Xr49PiblUZxpuh4qB4A1KhA9dYiY5p2yirAQWT0vHaMNRmbriplXPIu67Vc60F6NqA6bSYEjj-mpxKyej67-w3Ku97Bv0orB_t9KOd_ihM_AIa_GLZ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Deng, Linfeng</creator><creator>Zhao, Cheng</creator><creator>Wang, Xiaoqiang</creator><creator>Wang, Guojun</creator><creator>Qiu, Ruiyu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-6927-5866</orcidid><orcidid>https://orcid.org/0009-0005-7977-984X</orcidid><orcidid>https://orcid.org/0009-0007-4518-8579</orcidid><orcidid>https://orcid.org/0000-0001-8813-4692</orcidid></search><sort><creationdate>20241201</creationdate><title>MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network</title><author>Deng, Linfeng ; Zhao, Cheng ; Wang, Xiaoqiang ; Wang, Guojun ; Qiu, Ruiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-20a2609aef0f6d9ef1bd6adb0e3199f25c1ebc4c2c5affe2887b4bb30b5c0c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Linfeng</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Wang, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Qiu, Ruiyu</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Linfeng</au><au>Zhao, Cheng</au><au>Wang, Xiaoqiang</au><au>Wang, Guojun</au><au>Qiu, Ruiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>12</issue><spage>126136</spage><pages>126136-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing rolling bearing faults in noisy environments. The MRNet model features multiple convolution branches, each of which utilizes kernels with different sizes to capture fault information at different scales, so this multi-scale framework excels at extracting both local and global information from raw fault vibration signals, enhancing fault recognition accuracy. Additionally, we introduce residual blocks to maintain global information during the convolution operations, preventing useful feature information loss. To further improve global feature extraction capability of the network model, a lightweight Transformer module is developed and incorporated, compensating for some global information that the network’s front-end might fail to capture. The effectiveness of MRNet is validated by using two publicly available rolling bearing fault datasets and our own experiment dataset. The verification results indicate that MRNet outperforms other comparative models, particularly for complex fault diagnosis in noisy environments.</abstract><doi>10.1088/1361-6501/ad78f1</doi><orcidid>https://orcid.org/0009-0009-6927-5866</orcidid><orcidid>https://orcid.org/0009-0005-7977-984X</orcidid><orcidid>https://orcid.org/0009-0007-4518-8579</orcidid><orcidid>https://orcid.org/0000-0001-8813-4692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-12, Vol.35 (12), p.126136
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad78f1
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRNet:%20rolling%20bearing%20fault%20diagnosis%20in%20noisy%20environment%20based%20on%20multi-scale%20residual%20convolutional%20network&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Deng,%20Linfeng&rft.date=2024-12-01&rft.volume=35&rft.issue=12&rft.spage=126136&rft.pages=126136-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad78f1&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad78f1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126t-20a2609aef0f6d9ef1bd6adb0e3199f25c1ebc4c2c5affe2887b4bb30b5c0c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true