Loading…

Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT

The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual simultaneous localization and mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectiv...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2024-12, Vol.35 (12), p.126309
Main Authors: Huang, Wei, Zou, Chunlong, Yun, Juntong, Jiang, Du, Huang, Li, Liu, Ying, Jiang, Guo Zhang, Xie, Yuanmin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c126t-4701212c40392ca27ceaabde00edbc87adbcef4e442c6dbc40f482844f61df5e3
container_end_page
container_issue 12
container_start_page 126309
container_title Measurement science & technology
container_volume 35
creator Huang, Wei
Zou, Chunlong
Yun, Juntong
Jiang, Du
Huang, Li
Liu, Ying
Jiang, Guo Zhang
Xie, Yuanmin
description The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual simultaneous localization and mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectively handle the characteristics of local areas of non-rigid moving objects, seriously affecting the robustness and accuracy of the SLAM system in localization and mapping. To address these problems, we improved ORB-SLAM3 and proposed a real-time RGB-D visual SLAM framework for dynamic environments based on StrongSORT—Strong-SLAM. First, we combine YOLOv7-tiny with StrongSORT to match the semantic information of dynamic targets. Optical flow and epipolar constraints are then used to initially extract geometric and motion information between adjacent frames. Subsequently, based on an improved adaptive threshold segmentation algorithm and geometric residuals, a background model and a Gaussian residual model are constructed to further extract the geometric information of dynamic targets. Finally, semantic and geometric information are integrated to perform global feature motion level classification, and motion probabilities and optimization weights are defined to participate in global pose estimation and optimization. Experimental results on the publicly available TUM RGB-D dataset show that Strong-SLAM reduces the absolute trajectory error and relative pose error by at least 90% compared to ORB-SLAM3, achieving performance comparable to the most advanced dynamic SLAM solutions.
doi_str_mv 10.1088/1361-6501/ad7a11
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad7a11</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad7a11</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-4701212c40392ca27ceaabde00edbc87adbcef4e442c6dbc40f482844f61df5e3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvHvMH4k7S9MvbuuoqVBa29RzSZCKVfkhTF_bfb0vFy8zwvsxzeAi55_DAIU3XPIw5iyPga20TzfkFCf6jSxJAFiUMRBhekxvvvwEggSwLSFmMQ999sSLffDzSAXXDxrpFetg9sWd6rP2vbuhc0rqj9tTptjYUu2M9fbXYjZ5W2qOlfUcXUrE_lLfkyunG493fXpHP15dy-8by_e59u8mZ4SIemUyACy6MhDATRovEoNaVRQC0lUkTPU10EqUUJp5uCU6mIpXSxdy6CMMVgYVrht77AZ36GepWDyfFQc1W1KxAzQrUYiU8A3GZVW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Huang, Wei ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Jiang, Guo Zhang ; Xie, Yuanmin</creator><creatorcontrib>Huang, Wei ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Jiang, Guo Zhang ; Xie, Yuanmin</creatorcontrib><description>The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual simultaneous localization and mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectively handle the characteristics of local areas of non-rigid moving objects, seriously affecting the robustness and accuracy of the SLAM system in localization and mapping. To address these problems, we improved ORB-SLAM3 and proposed a real-time RGB-D visual SLAM framework for dynamic environments based on StrongSORT—Strong-SLAM. First, we combine YOLOv7-tiny with StrongSORT to match the semantic information of dynamic targets. Optical flow and epipolar constraints are then used to initially extract geometric and motion information between adjacent frames. Subsequently, based on an improved adaptive threshold segmentation algorithm and geometric residuals, a background model and a Gaussian residual model are constructed to further extract the geometric information of dynamic targets. Finally, semantic and geometric information are integrated to perform global feature motion level classification, and motion probabilities and optimization weights are defined to participate in global pose estimation and optimization. Experimental results on the publicly available TUM RGB-D dataset show that Strong-SLAM reduces the absolute trajectory error and relative pose error by at least 90% compared to ORB-SLAM3, achieving performance comparable to the most advanced dynamic SLAM solutions.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad7a11</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-12, Vol.35 (12), p.126309</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-4701212c40392ca27ceaabde00edbc87adbcef4e442c6dbc40f482844f61df5e3</cites><orcidid>0009-0000-6750-7066 ; 0000-0003-3210-9257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zou, Chunlong</creatorcontrib><creatorcontrib>Yun, Juntong</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Jiang, Guo Zhang</creatorcontrib><creatorcontrib>Xie, Yuanmin</creatorcontrib><title>Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT</title><title>Measurement science &amp; technology</title><description>The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual simultaneous localization and mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectively handle the characteristics of local areas of non-rigid moving objects, seriously affecting the robustness and accuracy of the SLAM system in localization and mapping. To address these problems, we improved ORB-SLAM3 and proposed a real-time RGB-D visual SLAM framework for dynamic environments based on StrongSORT—Strong-SLAM. First, we combine YOLOv7-tiny with StrongSORT to match the semantic information of dynamic targets. Optical flow and epipolar constraints are then used to initially extract geometric and motion information between adjacent frames. Subsequently, based on an improved adaptive threshold segmentation algorithm and geometric residuals, a background model and a Gaussian residual model are constructed to further extract the geometric information of dynamic targets. Finally, semantic and geometric information are integrated to perform global feature motion level classification, and motion probabilities and optimization weights are defined to participate in global pose estimation and optimization. Experimental results on the publicly available TUM RGB-D dataset show that Strong-SLAM reduces the absolute trajectory error and relative pose error by at least 90% compared to ORB-SLAM3, achieving performance comparable to the most advanced dynamic SLAM solutions.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFfvHvMH4k7S9MvbuuoqVBa29RzSZCKVfkhTF_bfb0vFy8zwvsxzeAi55_DAIU3XPIw5iyPga20TzfkFCf6jSxJAFiUMRBhekxvvvwEggSwLSFmMQ999sSLffDzSAXXDxrpFetg9sWd6rP2vbuhc0rqj9tTptjYUu2M9fbXYjZ5W2qOlfUcXUrE_lLfkyunG493fXpHP15dy-8by_e59u8mZ4SIemUyACy6MhDATRovEoNaVRQC0lUkTPU10EqUUJp5uCU6mIpXSxdy6CMMVgYVrht77AZ36GepWDyfFQc1W1KxAzQrUYiU8A3GZVW0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Huang, Wei</creator><creator>Zou, Chunlong</creator><creator>Yun, Juntong</creator><creator>Jiang, Du</creator><creator>Huang, Li</creator><creator>Liu, Ying</creator><creator>Jiang, Guo Zhang</creator><creator>Xie, Yuanmin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-6750-7066</orcidid><orcidid>https://orcid.org/0000-0003-3210-9257</orcidid></search><sort><creationdate>20241201</creationdate><title>Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT</title><author>Huang, Wei ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Jiang, Guo Zhang ; Xie, Yuanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-4701212c40392ca27ceaabde00edbc87adbcef4e442c6dbc40f482844f61df5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zou, Chunlong</creatorcontrib><creatorcontrib>Yun, Juntong</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Jiang, Guo Zhang</creatorcontrib><creatorcontrib>Xie, Yuanmin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Zou, Chunlong</au><au>Yun, Juntong</au><au>Jiang, Du</au><au>Huang, Li</au><au>Liu, Ying</au><au>Jiang, Guo Zhang</au><au>Xie, Yuanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>12</issue><spage>126309</spage><pages>126309-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual simultaneous localization and mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectively handle the characteristics of local areas of non-rigid moving objects, seriously affecting the robustness and accuracy of the SLAM system in localization and mapping. To address these problems, we improved ORB-SLAM3 and proposed a real-time RGB-D visual SLAM framework for dynamic environments based on StrongSORT—Strong-SLAM. First, we combine YOLOv7-tiny with StrongSORT to match the semantic information of dynamic targets. Optical flow and epipolar constraints are then used to initially extract geometric and motion information between adjacent frames. Subsequently, based on an improved adaptive threshold segmentation algorithm and geometric residuals, a background model and a Gaussian residual model are constructed to further extract the geometric information of dynamic targets. Finally, semantic and geometric information are integrated to perform global feature motion level classification, and motion probabilities and optimization weights are defined to participate in global pose estimation and optimization. Experimental results on the publicly available TUM RGB-D dataset show that Strong-SLAM reduces the absolute trajectory error and relative pose error by at least 90% compared to ORB-SLAM3, achieving performance comparable to the most advanced dynamic SLAM solutions.</abstract><doi>10.1088/1361-6501/ad7a11</doi><orcidid>https://orcid.org/0009-0000-6750-7066</orcidid><orcidid>https://orcid.org/0000-0003-3210-9257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-12, Vol.35 (12), p.126309
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad7a11
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-SLAM:%20real-time%20RGB-D%20visual%20SLAM%20in%20dynamic%20environments%20based%20on%20StrongSORT&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Huang,%20Wei&rft.date=2024-12-01&rft.volume=35&rft.issue=12&rft.spage=126309&rft.pages=126309-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad7a11&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad7a11%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126t-4701212c40392ca27ceaabde00edbc87adbcef4e442c6dbc40f482844f61df5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true