Loading…

Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization

In the field of LiDAR-based Simultaneous Localization and Mapping, the potential of ground point clouds to enhance pose estimation in mobile robots has yet to be fully realized. This paper focuses on leveraging ground point clouds to improve the performance of LiDAR-Inertial Odometry (LIO) systems f...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2025-01, Vol.36 (1), p.16308
Main Authors: Zhu, Housheng, Zou, Chunlong, Yun, Juntong, Jiang, Du, Huang, Li, Liu, Ying, Tao, Bo, Xie, Yuanmin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c126t-9ad535baf39b3eddc76bc2b0781ab4482fb4d126ec7c6866a4bb658c3c68c1cf3
container_end_page
container_issue 1
container_start_page 16308
container_title Measurement science & technology
container_volume 36
creator Zhu, Housheng
Zou, Chunlong
Yun, Juntong
Jiang, Du
Huang, Li
Liu, Ying
Tao, Bo
Xie, Yuanmin
description In the field of LiDAR-based Simultaneous Localization and Mapping, the potential of ground point clouds to enhance pose estimation in mobile robots has yet to be fully realized. This paper focuses on leveraging ground point clouds to improve the performance of LiDAR-Inertial Odometry (LIO) systems for ground-based mobile robots. We begin by analyzing the characteristics of ground point clouds and the typical types of noise that affect their extraction and utilization. Ground point clouds are then extracted from denoised data. Given the generally local planar nature of ground point clouds, we propose a segmentation-and-refitting approach to process them. This method reduces the computational burden of residual calculation in pose estimation by avoiding redundant plane fitting. Additionally, we introduce a data structure designed for the efficient management and utilization of ground point clouds obtained through segmentation and refitting. This structure is particularly suited to the ground point cloud data produced by our method, enabling efficient access and registration through the continuous maintenance and consolidation of local plane parameters. Our method has been integrated into advanced LIO systems (Bai et al 2022 IEEE Robot. Autom. Lett. 7 4861–8), and experimental results on challenging datasets demonstrate its promising performance.
doi_str_mv 10.1088/1361-6501/ad85f6
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad85f6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad85f6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-9ad535baf39b3eddc76bc2b0781ab4482fb4d126ec7c6866a4bb658c3c68c1cf3</originalsourceid><addsrcrecordid>eNo9kL1OwzAAhC0EEqWwM_oFTO04dhy2qkCpFKkSgonB8i8YNXFlm6E8PQkFptOd7m74ALgm-IZgIRaEcoI4w2ShrGCen4DZf3QKZrhlDcIVpefgIucPjHGD23YGXtcpfg4WdZvtLXTDuxqMs7ALd8snFAaXSlA7GG3sXUkH6GOCbz8DmKKOJUOt8tiPw18c9yX04UuVEIdLcObVLrurX52Dl4f759Uj6rbrzWrZIUMqXlCrLKNMK09bTZ21puHaVBo3gihd16LyurZj05nGcMG5qrXmTBg6OkOMp3OAj78mxZyT83KfQq_SQRIsJzhyIiEnEvIIh34DpEJZ0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization</title><source>Institute of Physics</source><creator>Zhu, Housheng ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Tao, Bo ; Xie, Yuanmin</creator><creatorcontrib>Zhu, Housheng ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Tao, Bo ; Xie, Yuanmin</creatorcontrib><description>In the field of LiDAR-based Simultaneous Localization and Mapping, the potential of ground point clouds to enhance pose estimation in mobile robots has yet to be fully realized. This paper focuses on leveraging ground point clouds to improve the performance of LiDAR-Inertial Odometry (LIO) systems for ground-based mobile robots. We begin by analyzing the characteristics of ground point clouds and the typical types of noise that affect their extraction and utilization. Ground point clouds are then extracted from denoised data. Given the generally local planar nature of ground point clouds, we propose a segmentation-and-refitting approach to process them. This method reduces the computational burden of residual calculation in pose estimation by avoiding redundant plane fitting. Additionally, we introduce a data structure designed for the efficient management and utilization of ground point clouds obtained through segmentation and refitting. This structure is particularly suited to the ground point cloud data produced by our method, enabling efficient access and registration through the continuous maintenance and consolidation of local plane parameters. Our method has been integrated into advanced LIO systems (Bai et al 2022 IEEE Robot. Autom. Lett. 7 4861–8), and experimental results on challenging datasets demonstrate its promising performance.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad85f6</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2025-01, Vol.36 (1), p.16308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-9ad535baf39b3eddc76bc2b0781ab4482fb4d126ec7c6866a4bb658c3c68c1cf3</cites><orcidid>0000-0002-5886-1992 ; 0000-0003-3210-9257 ; 0009-0001-7080-6427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Housheng</creatorcontrib><creatorcontrib>Zou, Chunlong</creatorcontrib><creatorcontrib>Yun, Juntong</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Xie, Yuanmin</creatorcontrib><title>Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization</title><title>Measurement science &amp; technology</title><description>In the field of LiDAR-based Simultaneous Localization and Mapping, the potential of ground point clouds to enhance pose estimation in mobile robots has yet to be fully realized. This paper focuses on leveraging ground point clouds to improve the performance of LiDAR-Inertial Odometry (LIO) systems for ground-based mobile robots. We begin by analyzing the characteristics of ground point clouds and the typical types of noise that affect their extraction and utilization. Ground point clouds are then extracted from denoised data. Given the generally local planar nature of ground point clouds, we propose a segmentation-and-refitting approach to process them. This method reduces the computational burden of residual calculation in pose estimation by avoiding redundant plane fitting. Additionally, we introduce a data structure designed for the efficient management and utilization of ground point clouds obtained through segmentation and refitting. This structure is particularly suited to the ground point cloud data produced by our method, enabling efficient access and registration through the continuous maintenance and consolidation of local plane parameters. Our method has been integrated into advanced LIO systems (Bai et al 2022 IEEE Robot. Autom. Lett. 7 4861–8), and experimental results on challenging datasets demonstrate its promising performance.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAAhC0EEqWwM_oFTO04dhy2qkCpFKkSgonB8i8YNXFlm6E8PQkFptOd7m74ALgm-IZgIRaEcoI4w2ShrGCen4DZf3QKZrhlDcIVpefgIucPjHGD23YGXtcpfg4WdZvtLXTDuxqMs7ALd8snFAaXSlA7GG3sXUkH6GOCbz8DmKKOJUOt8tiPw18c9yX04UuVEIdLcObVLrurX52Dl4f759Uj6rbrzWrZIUMqXlCrLKNMK09bTZ21puHaVBo3gihd16LyurZj05nGcMG5qrXmTBg6OkOMp3OAj78mxZyT83KfQq_SQRIsJzhyIiEnEvIIh34DpEJZ0Q</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Zhu, Housheng</creator><creator>Zou, Chunlong</creator><creator>Yun, Juntong</creator><creator>Jiang, Du</creator><creator>Huang, Li</creator><creator>Liu, Ying</creator><creator>Tao, Bo</creator><creator>Xie, Yuanmin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5886-1992</orcidid><orcidid>https://orcid.org/0000-0003-3210-9257</orcidid><orcidid>https://orcid.org/0009-0001-7080-6427</orcidid></search><sort><creationdate>20250131</creationdate><title>Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization</title><author>Zhu, Housheng ; Zou, Chunlong ; Yun, Juntong ; Jiang, Du ; Huang, Li ; Liu, Ying ; Tao, Bo ; Xie, Yuanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-9ad535baf39b3eddc76bc2b0781ab4482fb4d126ec7c6866a4bb658c3c68c1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Housheng</creatorcontrib><creatorcontrib>Zou, Chunlong</creatorcontrib><creatorcontrib>Yun, Juntong</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Xie, Yuanmin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Housheng</au><au>Zou, Chunlong</au><au>Yun, Juntong</au><au>Jiang, Du</au><au>Huang, Li</au><au>Liu, Ying</au><au>Tao, Bo</au><au>Xie, Yuanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2025-01-31</date><risdate>2025</risdate><volume>36</volume><issue>1</issue><spage>16308</spage><pages>16308-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>In the field of LiDAR-based Simultaneous Localization and Mapping, the potential of ground point clouds to enhance pose estimation in mobile robots has yet to be fully realized. This paper focuses on leveraging ground point clouds to improve the performance of LiDAR-Inertial Odometry (LIO) systems for ground-based mobile robots. We begin by analyzing the characteristics of ground point clouds and the typical types of noise that affect their extraction and utilization. Ground point clouds are then extracted from denoised data. Given the generally local planar nature of ground point clouds, we propose a segmentation-and-refitting approach to process them. This method reduces the computational burden of residual calculation in pose estimation by avoiding redundant plane fitting. Additionally, we introduce a data structure designed for the efficient management and utilization of ground point clouds obtained through segmentation and refitting. This structure is particularly suited to the ground point cloud data produced by our method, enabling efficient access and registration through the continuous maintenance and consolidation of local plane parameters. Our method has been integrated into advanced LIO systems (Bai et al 2022 IEEE Robot. Autom. Lett. 7 4861–8), and experimental results on challenging datasets demonstrate its promising performance.</abstract><doi>10.1088/1361-6501/ad85f6</doi><orcidid>https://orcid.org/0000-0002-5886-1992</orcidid><orcidid>https://orcid.org/0000-0003-3210-9257</orcidid><orcidid>https://orcid.org/0009-0001-7080-6427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2025-01, Vol.36 (1), p.16308
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad85f6
source Institute of Physics
title Ground-LIO: enhanced LiDAR-inertial odometry for ground robots based on ground optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground-LIO:%20enhanced%20LiDAR-inertial%20odometry%20for%20ground%20robots%20based%20on%20ground%20optimization&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Zhu,%20Housheng&rft.date=2025-01-31&rft.volume=36&rft.issue=1&rft.spage=16308&rft.pages=16308-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad85f6&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad85f6%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126t-9ad535baf39b3eddc76bc2b0781ab4482fb4d126ec7c6866a4bb658c3c68c1cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true