Loading…
A distributed factor graph model solving method for cooperative localization of UAV swarms
Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV...
Saved in:
Published in: | Measurement science & technology 2025-01, Vol.36 (1), p.16326 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3 |
container_end_page | |
container_issue | 1 |
container_start_page | 16326 |
container_title | Measurement science & technology |
container_volume | 36 |
creator | Yang, Pu Ye, Guo-Yang Shao, Chun-Li Yang, Shuang-Long Huang, Ze-Xia |
description | Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm. |
doi_str_mv | 10.1088/1361-6501/ad91d6 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad91d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad91d6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvHvMH6k7aZtIcy-IXLHhxPXgps0m6W2k3Jakr-uttWfH08n4wDA9jtwLuBJTlUuQoUpQglmS1sHjGkv_onCWgpUohy_NLdhXjBwAo0Dph7xW3bRxDu_0cneUNmdEHvgs07Hnvret49N2xPex478a9nxZTbbwfXKCxPTreeUNd-zMZf-C-4ZvqjccvCn28ZhcNddHd_OmCbR7uX1dP6frl8XlVrVMjMhxTRSKTzpCWEi2ibbRCI830aomkFOpMW-MKh5qKEgoUJAWgNSSLQqot5QsGp7sm-BiDa-ohtD2F71pAPbOpZxD1DKI-scl_AU_UWH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</creator><creatorcontrib>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</creatorcontrib><description>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad91d6</identifier><language>eng</language><ispartof>Measurement science & technology, 2025-01, Vol.36 (1), p.16326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</cites><orcidid>0000-0003-2232-7517 ; 0009-0003-9783-7850 ; 0000-0002-7287-8002 ; 0000-0003-2541-4456 ; 0009-0005-2347-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Ye, Guo-Yang</creatorcontrib><creatorcontrib>Shao, Chun-Li</creatorcontrib><creatorcontrib>Yang, Shuang-Long</creatorcontrib><creatorcontrib>Huang, Ze-Xia</creatorcontrib><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><title>Measurement science & technology</title><description>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFfvHvMH6k7aZtIcy-IXLHhxPXgps0m6W2k3Jakr-uttWfH08n4wDA9jtwLuBJTlUuQoUpQglmS1sHjGkv_onCWgpUohy_NLdhXjBwAo0Dph7xW3bRxDu_0cneUNmdEHvgs07Hnvret49N2xPex478a9nxZTbbwfXKCxPTreeUNd-zMZf-C-4ZvqjccvCn28ZhcNddHd_OmCbR7uX1dP6frl8XlVrVMjMhxTRSKTzpCWEi2ibbRCI830aomkFOpMW-MKh5qKEgoUJAWgNSSLQqot5QsGp7sm-BiDa-ohtD2F71pAPbOpZxD1DKI-scl_AU_UWH0</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Yang, Pu</creator><creator>Ye, Guo-Yang</creator><creator>Shao, Chun-Li</creator><creator>Yang, Shuang-Long</creator><creator>Huang, Ze-Xia</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2232-7517</orcidid><orcidid>https://orcid.org/0009-0003-9783-7850</orcidid><orcidid>https://orcid.org/0000-0002-7287-8002</orcidid><orcidid>https://orcid.org/0000-0003-2541-4456</orcidid><orcidid>https://orcid.org/0009-0005-2347-6903</orcidid></search><sort><creationdate>20250131</creationdate><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><author>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Ye, Guo-Yang</creatorcontrib><creatorcontrib>Shao, Chun-Li</creatorcontrib><creatorcontrib>Yang, Shuang-Long</creatorcontrib><creatorcontrib>Huang, Ze-Xia</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Pu</au><au>Ye, Guo-Yang</au><au>Shao, Chun-Li</au><au>Yang, Shuang-Long</au><au>Huang, Ze-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distributed factor graph model solving method for cooperative localization of UAV swarms</atitle><jtitle>Measurement science & technology</jtitle><date>2025-01-31</date><risdate>2025</risdate><volume>36</volume><issue>1</issue><spage>16326</spage><pages>16326-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</abstract><doi>10.1088/1361-6501/ad91d6</doi><orcidid>https://orcid.org/0000-0003-2232-7517</orcidid><orcidid>https://orcid.org/0009-0003-9783-7850</orcidid><orcidid>https://orcid.org/0000-0002-7287-8002</orcidid><orcidid>https://orcid.org/0000-0003-2541-4456</orcidid><orcidid>https://orcid.org/0009-0005-2347-6903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2025-01, Vol.36 (1), p.16326 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_ad91d6 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | A distributed factor graph model solving method for cooperative localization of UAV swarms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distributed%20factor%20graph%20model%20solving%20method%20for%20cooperative%20localization%20of%20UAV%20swarms&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Yang,%20Pu&rft.date=2025-01-31&rft.volume=36&rft.issue=1&rft.spage=16326&rft.pages=16326-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad91d6&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad91d6%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |