Loading…

A distributed factor graph model solving method for cooperative localization of UAV swarms

Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2025-01, Vol.36 (1), p.16326
Main Authors: Yang, Pu, Ye, Guo-Yang, Shao, Chun-Li, Yang, Shuang-Long, Huang, Ze-Xia
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3
container_end_page
container_issue 1
container_start_page 16326
container_title Measurement science & technology
container_volume 36
creator Yang, Pu
Ye, Guo-Yang
Shao, Chun-Li
Yang, Shuang-Long
Huang, Ze-Xia
description Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.
doi_str_mv 10.1088/1361-6501/ad91d6
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad91d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad91d6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvHvMH6k7aZtIcy-IXLHhxPXgps0m6W2k3Jakr-uttWfH08n4wDA9jtwLuBJTlUuQoUpQglmS1sHjGkv_onCWgpUohy_NLdhXjBwAo0Dph7xW3bRxDu_0cneUNmdEHvgs07Hnvret49N2xPex478a9nxZTbbwfXKCxPTreeUNd-zMZf-C-4ZvqjccvCn28ZhcNddHd_OmCbR7uX1dP6frl8XlVrVMjMhxTRSKTzpCWEi2ibbRCI830aomkFOpMW-MKh5qKEgoUJAWgNSSLQqot5QsGp7sm-BiDa-ohtD2F71pAPbOpZxD1DKI-scl_AU_UWH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</creator><creatorcontrib>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</creatorcontrib><description>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad91d6</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2025-01, Vol.36 (1), p.16326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</cites><orcidid>0000-0003-2232-7517 ; 0009-0003-9783-7850 ; 0000-0002-7287-8002 ; 0000-0003-2541-4456 ; 0009-0005-2347-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Ye, Guo-Yang</creatorcontrib><creatorcontrib>Shao, Chun-Li</creatorcontrib><creatorcontrib>Yang, Shuang-Long</creatorcontrib><creatorcontrib>Huang, Ze-Xia</creatorcontrib><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><title>Measurement science &amp; technology</title><description>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFfvHvMH6k7aZtIcy-IXLHhxPXgps0m6W2k3Jakr-uttWfH08n4wDA9jtwLuBJTlUuQoUpQglmS1sHjGkv_onCWgpUohy_NLdhXjBwAo0Dph7xW3bRxDu_0cneUNmdEHvgs07Hnvret49N2xPex478a9nxZTbbwfXKCxPTreeUNd-zMZf-C-4ZvqjccvCn28ZhcNddHd_OmCbR7uX1dP6frl8XlVrVMjMhxTRSKTzpCWEi2ibbRCI830aomkFOpMW-MKh5qKEgoUJAWgNSSLQqot5QsGp7sm-BiDa-ohtD2F71pAPbOpZxD1DKI-scl_AU_UWH0</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Yang, Pu</creator><creator>Ye, Guo-Yang</creator><creator>Shao, Chun-Li</creator><creator>Yang, Shuang-Long</creator><creator>Huang, Ze-Xia</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2232-7517</orcidid><orcidid>https://orcid.org/0009-0003-9783-7850</orcidid><orcidid>https://orcid.org/0000-0002-7287-8002</orcidid><orcidid>https://orcid.org/0000-0003-2541-4456</orcidid><orcidid>https://orcid.org/0009-0005-2347-6903</orcidid></search><sort><creationdate>20250131</creationdate><title>A distributed factor graph model solving method for cooperative localization of UAV swarms</title><author>Yang, Pu ; Ye, Guo-Yang ; Shao, Chun-Li ; Yang, Shuang-Long ; Huang, Ze-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Ye, Guo-Yang</creatorcontrib><creatorcontrib>Shao, Chun-Li</creatorcontrib><creatorcontrib>Yang, Shuang-Long</creatorcontrib><creatorcontrib>Huang, Ze-Xia</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Pu</au><au>Ye, Guo-Yang</au><au>Shao, Chun-Li</au><au>Yang, Shuang-Long</au><au>Huang, Ze-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distributed factor graph model solving method for cooperative localization of UAV swarms</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2025-01-31</date><risdate>2025</risdate><volume>36</volume><issue>1</issue><spage>16326</spage><pages>16326-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Accurate position information is crucial for unmanned aerial vehicles (UAV) to execute tasks. To balance the contradiction between the payload and localization accuracy of rotary UAVs, a cooperative localization method for UAV swarms based on the factor graph model is studied in this paper. Each UAV is equipped with a local factor graph model. A distributed factor graph model-solving method, AGA-Gauss–Newton conjugate gradient (GNCG), which combines an adaptive genetic algorithm and an improved GNCG algorithm, is proposed. The issue of falling into local optimal solutions was addressed by configuring the crossover and mutation behaviors of the genetic algorithm into an adaptive mode. The Gauss–Newton algorithm (GNQR) was improved using a conjugate gradient iteration, which effectively reduced the operation time of the algorithm. The simulation results indicate that the AGA-GNCG algorithm improves the localization accuracy with respect to the East–North–Up (ENU) frame by 58.8%, 60.6%, and 57.4% relative to the GNQR. Moreover, as the number of UAVs increases, the improved GNCG algorithm exhibits a significant improvement in computational efficiency compared to that of the GNQR algorithm.</abstract><doi>10.1088/1361-6501/ad91d6</doi><orcidid>https://orcid.org/0000-0003-2232-7517</orcidid><orcidid>https://orcid.org/0009-0003-9783-7850</orcidid><orcidid>https://orcid.org/0000-0002-7287-8002</orcidid><orcidid>https://orcid.org/0000-0003-2541-4456</orcidid><orcidid>https://orcid.org/0009-0005-2347-6903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2025-01, Vol.36 (1), p.16326
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad91d6
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title A distributed factor graph model solving method for cooperative localization of UAV swarms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distributed%20factor%20graph%20model%20solving%20method%20for%20cooperative%20localization%20of%20UAV%20swarms&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Yang,%20Pu&rft.date=2025-01-31&rft.volume=36&rft.issue=1&rft.spage=16326&rft.pages=16326-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad91d6&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad91d6%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126t-7a125eca9556d66df976c5c23386a776929dce4e69a480461a5106dca54457ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true