Loading…
Dislocation kinematics: a molecular dynamics study in Cu
The kinematics and kinetics of edge and screw dislocations in FCC materials were studied by molecular dynamics, with Cu as a case study. It was found that with increasing stress screw dislocations enter into the transonic regime continuously and that they remain stable up to a velocity of about 2.2...
Saved in:
Published in: | Modelling and simulation in materials science and engineering 2017-03, Vol.25 (2), p.25002 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The kinematics and kinetics of edge and screw dislocations in FCC materials were studied by molecular dynamics, with Cu as a case study. It was found that with increasing stress screw dislocations enter into the transonic regime continuously and that they remain stable up to a velocity of about 2.2 km s−1. Edge dislocations are limited by the transverse sound velocity at low stresses and discontinuously cross into the transonic regime at higher stresses. For sufficiently long edge dislocations, the subsonic-transonic transition is initiated by an athermal nucleation process. Finally, an expression for the velocity dependence of the dislocation mobility was derived. |
---|---|
ISSN: | 0965-0393 1361-651X |
DOI: | 10.1088/1361-651X/aa52a7 |