Loading…
Adjusting the Néel relaxation time of Fe 3 O 4 /Zn x Co 1-x Fe 2 O 4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe O /Zn Co Fe O core/shell nanoparticles...
Saved in:
Published in: | Nanotechnology 2021-02, Vol.32 (6), p.065703 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe
O
/Zn
Co
Fe
O
core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g
, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abc386 |