Loading…

Control one-dimensional length of rectangular pore on graphene membrane for better desalination performance

At present, there is a general contradiction between permeability and selectivity of reverse osmosis (RO) membranes for desalination; a membrane with higher water permeability will give a lower salt rejection or selectivity, and vice versa. In this work, single-layer nanoporous graphene is used as R...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2022-06, Vol.33 (24), p.245705
Main Authors: Chen, Shenghui, Ding, Jiaqi, Li, Quanjiang, He, Di, Liu, Yanli, Wang, Li, Lyu, Qiang, Wang, Meishan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At present, there is a general contradiction between permeability and selectivity of reverse osmosis (RO) membranes for desalination; a membrane with higher water permeability will give a lower salt rejection or selectivity, and vice versa. In this work, single-layer nanoporous graphene is used as RO membrane to investigate the effects of pore shape to reduce this contradiction by molecular dynamics simulations. Two kinds of pores (round and rectangular pores) with different sizes are simulated. For round pore, although the water permeability increases with the increase of the pore size, the salt rejection rate drops rapidly. For rectangular pore, reasonable designed pore structure can achieve improved water permeability and high salt rejection of graphene membrane by keeping one-dimensional length (i.e. the width) of the pore less than the size of the hydrated ions and increasing the other dimensional length. The restriction of one dimension can prevent the passage of hydrated ions through the pore effectively. This 'one-dimensional restriction' provides a simple strategy for designing RO membrane with variable pore structures to obtain a better desalination performance.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ac5c15