Loading…
Mott memristor based stochastic neurons for probabilistic computing
Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic...
Saved in:
Published in: | Nanotechnology 2024-07, Vol.35 (29), p.295201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423 |
container_end_page | |
container_issue | 29 |
container_start_page | 295201 |
container_title | Nanotechnology |
container_volume | 35 |
creator | Fida, Aabid Amin Mittal, Sparsh Khanday, Farooq Ahmad |
description | Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device. |
doi_str_mv | 10.1088/1361-6528/ad3c4b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ad3c4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035540198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EoqWwM6GMIBHqZ-KMqOIlFbHAbNmODa6SONjJwL_HJaUTSCf55Pvuzv4AOEfwBkHOl4gUKC8Y5ktZE03VAZjvrw7BHFaszCnldAZOYtxAiBDH6BjMCGcVKVkxB6tnPwxZa9rg4uBDpmQ0dZZS_SHj4HTWmTH4LmY2FfvglVSucT8V7dt-HFz3fgqOrGyiOdudC_B2f_e6eszXLw9Pq9t1rknBhpwQg6gueW2p4pQyJolGrCbcKgyrChtdQUiJMSUlVpe4VhabUhZMlgXBFJMFuJzmpnd8jiYOonVRm6aRnfFjFAQSxihEFU8onFAdfIzBWNEH18rwJRAUW3Vi60lsPYlJXWq52E0fVWvqfcOvqwRcTYDzvdj4MXTps6KTnReECVylYBgi0dc2sdd_sP_u_gaZr4Yn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035540198</pqid></control><display><type>article</type><title>Mott memristor based stochastic neurons for probabilistic computing</title><source>Institute of Physics</source><creator>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</creator><creatorcontrib>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</creatorcontrib><description>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad3c4b</identifier><identifier>PMID: 38593756</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>insulator to metal transition ; nanoscale ; spiking neural networks ; stochastic leaky integrate and fire ; threshold memristor</subject><ispartof>Nanotechnology, 2024-07, Vol.35 (29), p.295201</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</cites><orcidid>0000-0002-2514-5703 ; 0000-0002-2908-993X ; 0000-0001-9063-1022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fida, Aabid Amin</creatorcontrib><creatorcontrib>Mittal, Sparsh</creatorcontrib><creatorcontrib>Khanday, Farooq Ahmad</creatorcontrib><title>Mott memristor based stochastic neurons for probabilistic computing</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</description><subject>insulator to metal transition</subject><subject>nanoscale</subject><subject>spiking neural networks</subject><subject>stochastic leaky integrate and fire</subject><subject>threshold memristor</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQgC0EoqWwM6GMIBHqZ-KMqOIlFbHAbNmODa6SONjJwL_HJaUTSCf55Pvuzv4AOEfwBkHOl4gUKC8Y5ktZE03VAZjvrw7BHFaszCnldAZOYtxAiBDH6BjMCGcVKVkxB6tnPwxZa9rg4uBDpmQ0dZZS_SHj4HTWmTH4LmY2FfvglVSucT8V7dt-HFz3fgqOrGyiOdudC_B2f_e6eszXLw9Pq9t1rknBhpwQg6gueW2p4pQyJolGrCbcKgyrChtdQUiJMSUlVpe4VhabUhZMlgXBFJMFuJzmpnd8jiYOonVRm6aRnfFjFAQSxihEFU8onFAdfIzBWNEH18rwJRAUW3Vi60lsPYlJXWq52E0fVWvqfcOvqwRcTYDzvdj4MXTps6KTnReECVylYBgi0dc2sdd_sP_u_gaZr4Yn</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Fida, Aabid Amin</creator><creator>Mittal, Sparsh</creator><creator>Khanday, Farooq Ahmad</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid><orcidid>https://orcid.org/0000-0002-2908-993X</orcidid><orcidid>https://orcid.org/0000-0001-9063-1022</orcidid></search><sort><creationdate>20240715</creationdate><title>Mott memristor based stochastic neurons for probabilistic computing</title><author>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>insulator to metal transition</topic><topic>nanoscale</topic><topic>spiking neural networks</topic><topic>stochastic leaky integrate and fire</topic><topic>threshold memristor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fida, Aabid Amin</creatorcontrib><creatorcontrib>Mittal, Sparsh</creatorcontrib><creatorcontrib>Khanday, Farooq Ahmad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fida, Aabid Amin</au><au>Mittal, Sparsh</au><au>Khanday, Farooq Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mott memristor based stochastic neurons for probabilistic computing</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2024-07-15</date><risdate>2024</risdate><volume>35</volume><issue>29</issue><spage>295201</spage><pages>295201-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38593756</pmid><doi>10.1088/1361-6528/ad3c4b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid><orcidid>https://orcid.org/0000-0002-2908-993X</orcidid><orcidid>https://orcid.org/0000-0001-9063-1022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2024-07, Vol.35 (29), p.295201 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6528_ad3c4b |
source | Institute of Physics |
subjects | insulator to metal transition nanoscale spiking neural networks stochastic leaky integrate and fire threshold memristor |
title | Mott memristor based stochastic neurons for probabilistic computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mott%20memristor%20based%20stochastic%20neurons%20for%20probabilistic%20computing&rft.jtitle=Nanotechnology&rft.au=Fida,%20Aabid%20Amin&rft.date=2024-07-15&rft.volume=35&rft.issue=29&rft.spage=295201&rft.pages=295201-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad3c4b&rft_dat=%3Cproquest_cross%3E3035540198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035540198&rft_id=info:pmid/38593756&rfr_iscdi=true |