Loading…

Mott memristor based stochastic neurons for probabilistic computing

Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2024-07, Vol.35 (29), p.295201
Main Authors: Fida, Aabid Amin, Mittal, Sparsh, Khanday, Farooq Ahmad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423
container_end_page
container_issue 29
container_start_page 295201
container_title Nanotechnology
container_volume 35
creator Fida, Aabid Amin
Mittal, Sparsh
Khanday, Farooq Ahmad
description Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.
doi_str_mv 10.1088/1361-6528/ad3c4b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ad3c4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035540198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EoqWwM6GMIBHqZ-KMqOIlFbHAbNmODa6SONjJwL_HJaUTSCf55Pvuzv4AOEfwBkHOl4gUKC8Y5ktZE03VAZjvrw7BHFaszCnldAZOYtxAiBDH6BjMCGcVKVkxB6tnPwxZa9rg4uBDpmQ0dZZS_SHj4HTWmTH4LmY2FfvglVSucT8V7dt-HFz3fgqOrGyiOdudC_B2f_e6eszXLw9Pq9t1rknBhpwQg6gueW2p4pQyJolGrCbcKgyrChtdQUiJMSUlVpe4VhabUhZMlgXBFJMFuJzmpnd8jiYOonVRm6aRnfFjFAQSxihEFU8onFAdfIzBWNEH18rwJRAUW3Vi60lsPYlJXWq52E0fVWvqfcOvqwRcTYDzvdj4MXTps6KTnReECVylYBgi0dc2sdd_sP_u_gaZr4Yn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035540198</pqid></control><display><type>article</type><title>Mott memristor based stochastic neurons for probabilistic computing</title><source>Institute of Physics</source><creator>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</creator><creatorcontrib>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</creatorcontrib><description>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad3c4b</identifier><identifier>PMID: 38593756</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>insulator to metal transition ; nanoscale ; spiking neural networks ; stochastic leaky integrate and fire ; threshold memristor</subject><ispartof>Nanotechnology, 2024-07, Vol.35 (29), p.295201</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</cites><orcidid>0000-0002-2514-5703 ; 0000-0002-2908-993X ; 0000-0001-9063-1022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fida, Aabid Amin</creatorcontrib><creatorcontrib>Mittal, Sparsh</creatorcontrib><creatorcontrib>Khanday, Farooq Ahmad</creatorcontrib><title>Mott memristor based stochastic neurons for probabilistic computing</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</description><subject>insulator to metal transition</subject><subject>nanoscale</subject><subject>spiking neural networks</subject><subject>stochastic leaky integrate and fire</subject><subject>threshold memristor</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQgC0EoqWwM6GMIBHqZ-KMqOIlFbHAbNmODa6SONjJwL_HJaUTSCf55Pvuzv4AOEfwBkHOl4gUKC8Y5ktZE03VAZjvrw7BHFaszCnldAZOYtxAiBDH6BjMCGcVKVkxB6tnPwxZa9rg4uBDpmQ0dZZS_SHj4HTWmTH4LmY2FfvglVSucT8V7dt-HFz3fgqOrGyiOdudC_B2f_e6eszXLw9Pq9t1rknBhpwQg6gueW2p4pQyJolGrCbcKgyrChtdQUiJMSUlVpe4VhabUhZMlgXBFJMFuJzmpnd8jiYOonVRm6aRnfFjFAQSxihEFU8onFAdfIzBWNEH18rwJRAUW3Vi60lsPYlJXWq52E0fVWvqfcOvqwRcTYDzvdj4MXTps6KTnReECVylYBgi0dc2sdd_sP_u_gaZr4Yn</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Fida, Aabid Amin</creator><creator>Mittal, Sparsh</creator><creator>Khanday, Farooq Ahmad</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid><orcidid>https://orcid.org/0000-0002-2908-993X</orcidid><orcidid>https://orcid.org/0000-0001-9063-1022</orcidid></search><sort><creationdate>20240715</creationdate><title>Mott memristor based stochastic neurons for probabilistic computing</title><author>Fida, Aabid Amin ; Mittal, Sparsh ; Khanday, Farooq Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>insulator to metal transition</topic><topic>nanoscale</topic><topic>spiking neural networks</topic><topic>stochastic leaky integrate and fire</topic><topic>threshold memristor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fida, Aabid Amin</creatorcontrib><creatorcontrib>Mittal, Sparsh</creatorcontrib><creatorcontrib>Khanday, Farooq Ahmad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fida, Aabid Amin</au><au>Mittal, Sparsh</au><au>Khanday, Farooq Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mott memristor based stochastic neurons for probabilistic computing</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2024-07-15</date><risdate>2024</risdate><volume>35</volume><issue>29</issue><spage>295201</spage><pages>295201-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38593756</pmid><doi>10.1088/1361-6528/ad3c4b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid><orcidid>https://orcid.org/0000-0002-2908-993X</orcidid><orcidid>https://orcid.org/0000-0001-9063-1022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2024-07, Vol.35 (29), p.295201
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ad3c4b
source Institute of Physics
subjects insulator to metal transition
nanoscale
spiking neural networks
stochastic leaky integrate and fire
threshold memristor
title Mott memristor based stochastic neurons for probabilistic computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mott%20memristor%20based%20stochastic%20neurons%20for%20probabilistic%20computing&rft.jtitle=Nanotechnology&rft.au=Fida,%20Aabid%20Amin&rft.date=2024-07-15&rft.volume=35&rft.issue=29&rft.spage=295201&rft.pages=295201-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad3c4b&rft_dat=%3Cproquest_cross%3E3035540198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-33e14c78df4b84455a3c15d38fb20992ec90043ee743fc72dbf2e7a65a7632423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035540198&rft_id=info:pmid/38593756&rfr_iscdi=true