Loading…

Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media

This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressur...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2018-08, Vol.31 (8), p.3617-3650
Main Authors: Celik, Emine, Hoang, Luan, Kieu, Thinh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3
cites cdi_FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3
container_end_page 3650
container_issue 8
container_start_page 3617
container_title Nonlinearity
container_volume 31
creator Celik, Emine
Hoang, Luan
Kieu, Thinh
description This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.
doi_str_mv 10.1088/1361-6544/aabf05
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aabf05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaabf05</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3</originalsourceid><addsrcrecordid>eNp1kMFKAzEYhIMoWKt3j3kA1ybNJps9SrVVKHjRc_iTTdqUNFmTLtK3d0vFm6eBYWYYPoTuKXmkRMoZZYJWgtf1DEA7wi_Q5M-6RBPSclo1DeXX6KaUHSGUyjmbIHhOgw5HHFMMPlrIuIcMOgVvsP0a4OBTLNiljAFvbLQZAjYBSsHJ4WXKZru1fm8z3sAYC-m7YB9xn3IaCt7bzsMtunIQir371Sn6XL58LF6r9fvqbfG0rsxckkPV6sa6tqvrzjBWMwOWS9YyIC1IS4TrhNPcEiCNFFqaTnSMi6YVkkoNpnFsish51-RUSrZO9dnvIR8VJeqESJ14qBMPdUY0Vh7OFZ96tUtDjuPB_-M_4hVp8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Celik, Emine ; Hoang, Luan ; Kieu, Thinh</creator><creatorcontrib>Celik, Emine ; Hoang, Luan ; Kieu, Thinh</creatorcontrib><description>This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aabf05</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>compressible fluids ; doubly nonlinear equation ; Forchheimer flows ; Moser iteration ; nonlinear Robin condition ; porous media</subject><ispartof>Nonlinearity, 2018-08, Vol.31 (8), p.3617-3650</ispartof><rights>2018 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3</citedby><cites>FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Celik, Emine</creatorcontrib><creatorcontrib>Hoang, Luan</creatorcontrib><creatorcontrib>Kieu, Thinh</creatorcontrib><title>Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.</description><subject>compressible fluids</subject><subject>doubly nonlinear equation</subject><subject>Forchheimer flows</subject><subject>Moser iteration</subject><subject>nonlinear Robin condition</subject><subject>porous media</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEYhIMoWKt3j3kA1ybNJps9SrVVKHjRc_iTTdqUNFmTLtK3d0vFm6eBYWYYPoTuKXmkRMoZZYJWgtf1DEA7wi_Q5M-6RBPSclo1DeXX6KaUHSGUyjmbIHhOgw5HHFMMPlrIuIcMOgVvsP0a4OBTLNiljAFvbLQZAjYBSsHJ4WXKZru1fm8z3sAYC-m7YB9xn3IaCt7bzsMtunIQir371Sn6XL58LF6r9fvqbfG0rsxckkPV6sa6tqvrzjBWMwOWS9YyIC1IS4TrhNPcEiCNFFqaTnSMi6YVkkoNpnFsish51-RUSrZO9dnvIR8VJeqESJ14qBMPdUY0Vh7OFZ96tUtDjuPB_-M_4hVp8g</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Celik, Emine</creator><creator>Hoang, Luan</creator><creator>Kieu, Thinh</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media</title><author>Celik, Emine ; Hoang, Luan ; Kieu, Thinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>compressible fluids</topic><topic>doubly nonlinear equation</topic><topic>Forchheimer flows</topic><topic>Moser iteration</topic><topic>nonlinear Robin condition</topic><topic>porous media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celik, Emine</creatorcontrib><creatorcontrib>Hoang, Luan</creatorcontrib><creatorcontrib>Kieu, Thinh</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celik, Emine</au><au>Hoang, Luan</au><au>Kieu, Thinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>31</volume><issue>8</issue><spage>3617</spage><epage>3650</epage><pages>3617-3650</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source term and boundary flux are integrated into the model. We derive a doubly nonlinear parabolic equation for the so-called pseudo-pressure, and study its initial value problem subject to a general nonlinear Robin boundary condition. The growth rates in the source term and the boundary condition are arbitrarily large. The maximum of the solution, for positive time, is estimated in terms of certain Lebesgue norms of the initial and boundary data. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications. In dealing with the complexity and generality of the equation and boundary condition, suitable trace theorems and Sobolev's inequalities are utilized, and a well-adapted Moser's iteration is implemented.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aabf05</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2018-08, Vol.31 (8), p.3617-3650
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_aabf05
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects compressible fluids
doubly nonlinear equation
Forchheimer flows
Moser iteration
nonlinear Robin condition
porous media
title Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doubly%20nonlinear%20parabolic%20equations%20for%20a%20general%20class%20of%20Forchheimer%20gas%20flows%20in%20porous%20media&rft.jtitle=Nonlinearity&rft.au=Celik,%20Emine&rft.date=2018-08-01&rft.volume=31&rft.issue=8&rft.spage=3617&rft.epage=3650&rft.pages=3617-3650&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aabf05&rft_dat=%3Ciop_cross%3Enonaabf05%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-9b7ef9d44dc3343cae58393a09a8e06fd6fb5e0a0786b8cd6d356796818bac7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true