Loading…

Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves

In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2019-07, Vol.32 (7), p.2481-2495
Main Authors: Bahrouni, Anouar, R dulescu, Vicen iu D, Repovš, Dušan D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233
cites cdi_FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233
container_end_page 2495
container_issue 7
container_start_page 2481
container_title Nonlinearity
container_volume 32
creator Bahrouni, Anouar
R dulescu, Vicen iu D
Repovš, Dušan D
description In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. After establishing a weighted inequality for the Baouendi-Grushin operator and a related compactness property, we establish the existence of stationary waves under arbitrary perturbations of the reaction.
doi_str_mv 10.1088/1361-6544/ab0b03
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ab0b03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab0b03</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMoOKd3j_kA1iVN0qXeZDoVBl70HN4mqcvokpJkK357WybePL3w_Hl5-CF0S8k9JVIuKKtoUQnOF9CQhrAzNPuTztGM1IIWyyUVl-gqpR0hlMqSzVDzFA5NZ3G_hWRxjuBT8E7jtgsD7mMYvX3Cg8tbfIToYMp-xTDk7QP2wXfOW4i4h5xt9AmDNzhlyC54iN94gKNN1-iihS7Zm987R5_r54_Va7F5f3lbPW4KzcoyF2ZZtlUlecWt1LWQ3AC1khgQxpSlsYJrM5rSMtZS1ghptDDAai15rU3J2ByR018dQ0rRtqqPbj_OUJSoiZGagKgJiDoxGit3p4oLvdqFQ_TjwP_jP7UbamQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bahrouni, Anouar ; R dulescu, Vicen iu D ; Repovš, Dušan D</creator><creatorcontrib>Bahrouni, Anouar ; R dulescu, Vicen iu D ; Repovš, Dušan D</creatorcontrib><description>In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. After establishing a weighted inequality for the Baouendi-Grushin operator and a related compactness property, we establish the existence of stationary waves under arbitrary perturbations of the reaction.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab0b03</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Baouendi-Grushin operator ; Caffarelli-Kohn-Nirenberg inequality ; nonlinear eigenvalue problem ; transonic flow ; variable exponent</subject><ispartof>Nonlinearity, 2019-07, Vol.32 (7), p.2481-2495</ispartof><rights>2019 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233</citedby><cites>FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233</cites><orcidid>0000-0003-4615-5537 ; 0000-0002-6643-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>R dulescu, Vicen iu D</creatorcontrib><creatorcontrib>Repovš, Dušan D</creatorcontrib><title>Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. After establishing a weighted inequality for the Baouendi-Grushin operator and a related compactness property, we establish the existence of stationary waves under arbitrary perturbations of the reaction.</description><subject>Baouendi-Grushin operator</subject><subject>Caffarelli-Kohn-Nirenberg inequality</subject><subject>nonlinear eigenvalue problem</subject><subject>transonic flow</subject><subject>variable exponent</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYxoMoOKd3j_kA1iVN0qXeZDoVBl70HN4mqcvokpJkK357WybePL3w_Hl5-CF0S8k9JVIuKKtoUQnOF9CQhrAzNPuTztGM1IIWyyUVl-gqpR0hlMqSzVDzFA5NZ3G_hWRxjuBT8E7jtgsD7mMYvX3Cg8tbfIToYMp-xTDk7QP2wXfOW4i4h5xt9AmDNzhlyC54iN94gKNN1-iihS7Zm987R5_r54_Va7F5f3lbPW4KzcoyF2ZZtlUlecWt1LWQ3AC1khgQxpSlsYJrM5rSMtZS1ghptDDAai15rU3J2ByR018dQ0rRtqqPbj_OUJSoiZGagKgJiDoxGit3p4oLvdqFQ_TjwP_jP7UbamQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bahrouni, Anouar</creator><creator>R dulescu, Vicen iu D</creator><creator>Repovš, Dušan D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4615-5537</orcidid><orcidid>https://orcid.org/0000-0002-6643-1271</orcidid></search><sort><creationdate>20190701</creationdate><title>Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves</title><author>Bahrouni, Anouar ; R dulescu, Vicen iu D ; Repovš, Dušan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Baouendi-Grushin operator</topic><topic>Caffarelli-Kohn-Nirenberg inequality</topic><topic>nonlinear eigenvalue problem</topic><topic>transonic flow</topic><topic>variable exponent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>R dulescu, Vicen iu D</creatorcontrib><creatorcontrib>Repovš, Dušan D</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahrouni, Anouar</au><au>R dulescu, Vicen iu D</au><au>Repovš, Dušan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>32</volume><issue>7</issue><spage>2481</spage><epage>2495</epage><pages>2481-2495</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. After establishing a weighted inequality for the Baouendi-Grushin operator and a related compactness property, we establish the existence of stationary waves under arbitrary perturbations of the reaction.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab0b03</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4615-5537</orcidid><orcidid>https://orcid.org/0000-0002-6643-1271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2019-07, Vol.32 (7), p.2481-2495
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ab0b03
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Baouendi-Grushin operator
Caffarelli-Kohn-Nirenberg inequality
nonlinear eigenvalue problem
transonic flow
variable exponent
title Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20phase%20transonic%20flow%20problems%20with%20variable%20growth:%20nonlinear%20patterns%20and%20stationary%20waves&rft.jtitle=Nonlinearity&rft.au=Bahrouni,%20Anouar&rft.date=2019-07-01&rft.volume=32&rft.issue=7&rft.spage=2481&rft.epage=2495&rft.pages=2481-2495&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab0b03&rft_dat=%3Ciop_cross%3Enonab0b03%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d72f668464e8c9584da1e80da5dd22de54cd4648e33f13b58dc5da39c849cd233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true