Loading…

Existence of noise induced order, a computer aided proof

We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with ad...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2020-09, Vol.33 (9), p.4237-4276
Main Authors: Galatolo, Stefano, Monge, Maurizio, Nisoli, Isaia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263
cites cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263
container_end_page 4276
container_issue 9
container_start_page 4237
container_title Nonlinearity
container_volume 33
creator Galatolo, Stefano
Monge, Maurizio
Nisoli, Isaia
description We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.
doi_str_mv 10.1088/1361-6544/ab86cd
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ab86cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab86cd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEf3LrNxN3VuetM2WcowPmDAja5DmgdkcJqStKD_3pYRV-LqwuE7l_MRcsvgnoEQG4YNK5ua843uRGPsGSl-o3NSgKxZ2basviRXOR8AGBMVFkTsPkMeXW8cjZ72MWRHQ28n4yyNybq0ppqaeBym0SWqg53zIcXor8mF1x_Z3fzcFXl_3L1tn8v969PL9mFfGmQwlgI7g7VpkRvOUHIrsXEgjAfJa11b7FCaFlpsOHg-U5WESgtwDmFe2OCKwOmvSTHn5LwaUjjq9KUYqMVcLZpq0VQn87myPlVCHNQhTqmfB_6H3_2B97FXiEoqXmGrBuvxG7DwZVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of noise induced order, a computer aided proof</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</creator><creatorcontrib>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</creatorcontrib><description>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab86cd</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Belousov-Zhabotinsky reaction ; computer aided proof ; interval arithmetics ; Lyapunov exponent ; noise induced order ; quantitative statistical stability ; random dynamics</subject><ispartof>Nonlinearity, 2020-09, Vol.33 (9), p.4237-4276</ispartof><rights>2020 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</citedby><cites>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</cites><orcidid>0000-0003-2474-594X ; 0000-0003-3934-5412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Galatolo, Stefano</creatorcontrib><creatorcontrib>Monge, Maurizio</creatorcontrib><creatorcontrib>Nisoli, Isaia</creatorcontrib><title>Existence of noise induced order, a computer aided proof</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</description><subject>Belousov-Zhabotinsky reaction</subject><subject>computer aided proof</subject><subject>interval arithmetics</subject><subject>Lyapunov exponent</subject><subject>noise induced order</subject><subject>quantitative statistical stability</subject><subject>random dynamics</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEf3LrNxN3VuetM2WcowPmDAja5DmgdkcJqStKD_3pYRV-LqwuE7l_MRcsvgnoEQG4YNK5ua843uRGPsGSl-o3NSgKxZ2basviRXOR8AGBMVFkTsPkMeXW8cjZ72MWRHQ28n4yyNybq0ppqaeBym0SWqg53zIcXor8mF1x_Z3fzcFXl_3L1tn8v969PL9mFfGmQwlgI7g7VpkRvOUHIrsXEgjAfJa11b7FCaFlpsOHg-U5WESgtwDmFe2OCKwOmvSTHn5LwaUjjq9KUYqMVcLZpq0VQn87myPlVCHNQhTqmfB_6H3_2B97FXiEoqXmGrBuvxG7DwZVc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Galatolo, Stefano</creator><creator>Monge, Maurizio</creator><creator>Nisoli, Isaia</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2474-594X</orcidid><orcidid>https://orcid.org/0000-0003-3934-5412</orcidid></search><sort><creationdate>20200901</creationdate><title>Existence of noise induced order, a computer aided proof</title><author>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Belousov-Zhabotinsky reaction</topic><topic>computer aided proof</topic><topic>interval arithmetics</topic><topic>Lyapunov exponent</topic><topic>noise induced order</topic><topic>quantitative statistical stability</topic><topic>random dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galatolo, Stefano</creatorcontrib><creatorcontrib>Monge, Maurizio</creatorcontrib><creatorcontrib>Nisoli, Isaia</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galatolo, Stefano</au><au>Monge, Maurizio</au><au>Nisoli, Isaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of noise induced order, a computer aided proof</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>9</issue><spage>4237</spage><epage>4276</epage><pages>4237-4276</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab86cd</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-2474-594X</orcidid><orcidid>https://orcid.org/0000-0003-3934-5412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2020-09, Vol.33 (9), p.4237-4276
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ab86cd
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Belousov-Zhabotinsky reaction
computer aided proof
interval arithmetics
Lyapunov exponent
noise induced order
quantitative statistical stability
random dynamics
title Existence of noise induced order, a computer aided proof
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20noise%20induced%20order,%20a%20computer%20aided%20proof&rft.jtitle=Nonlinearity&rft.au=Galatolo,%20Stefano&rft.date=2020-09-01&rft.volume=33&rft.issue=9&rft.spage=4237&rft.epage=4276&rft.pages=4237-4276&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab86cd&rft_dat=%3Ciop_cross%3Enonab86cd%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true