Loading…
Existence of noise induced order, a computer aided proof
We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with ad...
Saved in:
Published in: | Nonlinearity 2020-09, Vol.33 (9), p.4237-4276 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263 |
container_end_page | 4276 |
container_issue | 9 |
container_start_page | 4237 |
container_title | Nonlinearity |
container_volume | 33 |
creator | Galatolo, Stefano Monge, Maurizio Nisoli, Isaia |
description | We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases. |
doi_str_mv | 10.1088/1361-6544/ab86cd |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ab86cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab86cd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEf3LrNxN3VuetM2WcowPmDAja5DmgdkcJqStKD_3pYRV-LqwuE7l_MRcsvgnoEQG4YNK5ua843uRGPsGSl-o3NSgKxZ2basviRXOR8AGBMVFkTsPkMeXW8cjZ72MWRHQ28n4yyNybq0ppqaeBym0SWqg53zIcXor8mF1x_Z3fzcFXl_3L1tn8v969PL9mFfGmQwlgI7g7VpkRvOUHIrsXEgjAfJa11b7FCaFlpsOHg-U5WESgtwDmFe2OCKwOmvSTHn5LwaUjjq9KUYqMVcLZpq0VQn87myPlVCHNQhTqmfB_6H3_2B97FXiEoqXmGrBuvxG7DwZVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of noise induced order, a computer aided proof</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</creator><creatorcontrib>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</creatorcontrib><description>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab86cd</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Belousov-Zhabotinsky reaction ; computer aided proof ; interval arithmetics ; Lyapunov exponent ; noise induced order ; quantitative statistical stability ; random dynamics</subject><ispartof>Nonlinearity, 2020-09, Vol.33 (9), p.4237-4276</ispartof><rights>2020 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</citedby><cites>FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</cites><orcidid>0000-0003-2474-594X ; 0000-0003-3934-5412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Galatolo, Stefano</creatorcontrib><creatorcontrib>Monge, Maurizio</creatorcontrib><creatorcontrib>Nisoli, Isaia</creatorcontrib><title>Existence of noise induced order, a computer aided proof</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</description><subject>Belousov-Zhabotinsky reaction</subject><subject>computer aided proof</subject><subject>interval arithmetics</subject><subject>Lyapunov exponent</subject><subject>noise induced order</subject><subject>quantitative statistical stability</subject><subject>random dynamics</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEf3LrNxN3VuetM2WcowPmDAja5DmgdkcJqStKD_3pYRV-LqwuE7l_MRcsvgnoEQG4YNK5ua843uRGPsGSl-o3NSgKxZ2basviRXOR8AGBMVFkTsPkMeXW8cjZ72MWRHQ28n4yyNybq0ppqaeBym0SWqg53zIcXor8mF1x_Z3fzcFXl_3L1tn8v969PL9mFfGmQwlgI7g7VpkRvOUHIrsXEgjAfJa11b7FCaFlpsOHg-U5WESgtwDmFe2OCKwOmvSTHn5LwaUjjq9KUYqMVcLZpq0VQn87myPlVCHNQhTqmfB_6H3_2B97FXiEoqXmGrBuvxG7DwZVc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Galatolo, Stefano</creator><creator>Monge, Maurizio</creator><creator>Nisoli, Isaia</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2474-594X</orcidid><orcidid>https://orcid.org/0000-0003-3934-5412</orcidid></search><sort><creationdate>20200901</creationdate><title>Existence of noise induced order, a computer aided proof</title><author>Galatolo, Stefano ; Monge, Maurizio ; Nisoli, Isaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Belousov-Zhabotinsky reaction</topic><topic>computer aided proof</topic><topic>interval arithmetics</topic><topic>Lyapunov exponent</topic><topic>noise induced order</topic><topic>quantitative statistical stability</topic><topic>random dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galatolo, Stefano</creatorcontrib><creatorcontrib>Monge, Maurizio</creatorcontrib><creatorcontrib>Nisoli, Isaia</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galatolo, Stefano</au><au>Monge, Maurizio</au><au>Nisoli, Isaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of noise induced order, a computer aided proof</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>9</issue><spage>4237</spage><epage>4276</epage><pages>4237-4276</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We prove the existence of noise induced order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belousov-Zhabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the system's stationary measure in the L1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a Hölder way when the noise amplitude increases.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab86cd</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-2474-594X</orcidid><orcidid>https://orcid.org/0000-0003-3934-5412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2020-09, Vol.33 (9), p.4237-4276 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ab86cd |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Belousov-Zhabotinsky reaction computer aided proof interval arithmetics Lyapunov exponent noise induced order quantitative statistical stability random dynamics |
title | Existence of noise induced order, a computer aided proof |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20noise%20induced%20order,%20a%20computer%20aided%20proof&rft.jtitle=Nonlinearity&rft.au=Galatolo,%20Stefano&rft.date=2020-09-01&rft.volume=33&rft.issue=9&rft.spage=4237&rft.epage=4276&rft.pages=4237-4276&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab86cd&rft_dat=%3Ciop_cross%3Enonab86cd%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-83bc35c734c41394d936e08cf0945a5d3b39c7073640f434c2902a80ee3018263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |