Loading…
Piecewise linear iterated function systems on the line of overlapping construction
In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS a...
Saved in:
Published in: | Nonlinearity 2022-01, Vol.35 (1), p.245-277 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313 |
container_end_page | 277 |
container_issue | 1 |
container_start_page | 245 |
container_title | Nonlinearity |
container_volume | 35 |
creator | Dániel Prokaj, R Simon, Károly |
description | In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor. |
doi_str_mv | 10.1088/1361-6544/ac355e |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac355e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac355e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWDcf2yY9yuIXLCii5zBNJ5ql25Qkq-y_d2vFm6d5GZ53GB5CLjm75kzrBZcVL6pyuVyAlWWJR2T2tzomM1aXvFCKl6fkLKUNY5xrIWfk5dmjxS-fkHa-R4jUZ4yQsaVu19vsQ0_TPmXcJnqI-WPiaHA0fGLsYBh8_05t6FOOux_-nJw46BJe_M45ebu7fV09FOun-8fVzbqwQrNcKNROKw0ttM4hr-rGCgGyxKrSTApQspKqgbpVLUpXc6g1b2rZCrZEEJLLOWHTXRtDShGdGaLfQtwbzszoxIwCzCjATE4Olaup4sNgNmEX-8OD_-PfLaRkfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Piecewise linear iterated function systems on the line of overlapping construction</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dániel Prokaj, R ; Simon, Károly</creator><creatorcontrib>Dániel Prokaj, R ; Simon, Károly</creatorcontrib><description>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac355e</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>graph directed iterated function system ; Hausdorff dimension ; piecewise linear dynamics</subject><ispartof>Nonlinearity, 2022-01, Vol.35 (1), p.245-277</ispartof><rights>2021 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</citedby><cites>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</cites><orcidid>0000-0003-3379-7215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dániel Prokaj, R</creatorcontrib><creatorcontrib>Simon, Károly</creatorcontrib><title>Piecewise linear iterated function systems on the line of overlapping construction</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</description><subject>graph directed iterated function system</subject><subject>Hausdorff dimension</subject><subject>piecewise linear dynamics</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWDcf2yY9yuIXLCii5zBNJ5ql25Qkq-y_d2vFm6d5GZ53GB5CLjm75kzrBZcVL6pyuVyAlWWJR2T2tzomM1aXvFCKl6fkLKUNY5xrIWfk5dmjxS-fkHa-R4jUZ4yQsaVu19vsQ0_TPmXcJnqI-WPiaHA0fGLsYBh8_05t6FOOux_-nJw46BJe_M45ebu7fV09FOun-8fVzbqwQrNcKNROKw0ttM4hr-rGCgGyxKrSTApQspKqgbpVLUpXc6g1b2rZCrZEEJLLOWHTXRtDShGdGaLfQtwbzszoxIwCzCjATE4Olaup4sNgNmEX-8OD_-PfLaRkfg</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Dániel Prokaj, R</creator><creator>Simon, Károly</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3379-7215</orcidid></search><sort><creationdate>20220106</creationdate><title>Piecewise linear iterated function systems on the line of overlapping construction</title><author>Dániel Prokaj, R ; Simon, Károly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>graph directed iterated function system</topic><topic>Hausdorff dimension</topic><topic>piecewise linear dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dániel Prokaj, R</creatorcontrib><creatorcontrib>Simon, Károly</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dániel Prokaj, R</au><au>Simon, Károly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise linear iterated function systems on the line of overlapping construction</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-01-06</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><spage>245</spage><epage>277</epage><pages>245-277</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac355e</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-3379-7215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2022-01, Vol.35 (1), p.245-277 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ac355e |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | graph directed iterated function system Hausdorff dimension piecewise linear dynamics |
title | Piecewise linear iterated function systems on the line of overlapping construction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise%20linear%20iterated%20function%20systems%20on%20the%20line%20of%20overlapping%20construction&rft.jtitle=Nonlinearity&rft.au=D%C3%A1niel%20Prokaj,%20R&rft.date=2022-01-06&rft.volume=35&rft.issue=1&rft.spage=245&rft.epage=277&rft.pages=245-277&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac355e&rft_dat=%3Ciop_cross%3Enonac355e%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |