Loading…

Piecewise linear iterated function systems on the line of overlapping construction

In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS a...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2022-01, Vol.35 (1), p.245-277
Main Authors: Dániel Prokaj, R, Simon, Károly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313
cites cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313
container_end_page 277
container_issue 1
container_start_page 245
container_title Nonlinearity
container_volume 35
creator Dániel Prokaj, R
Simon, Károly
description In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.
doi_str_mv 10.1088/1361-6544/ac355e
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac355e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac355e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWDcf2yY9yuIXLCii5zBNJ5ql25Qkq-y_d2vFm6d5GZ53GB5CLjm75kzrBZcVL6pyuVyAlWWJR2T2tzomM1aXvFCKl6fkLKUNY5xrIWfk5dmjxS-fkHa-R4jUZ4yQsaVu19vsQ0_TPmXcJnqI-WPiaHA0fGLsYBh8_05t6FOOux_-nJw46BJe_M45ebu7fV09FOun-8fVzbqwQrNcKNROKw0ttM4hr-rGCgGyxKrSTApQspKqgbpVLUpXc6g1b2rZCrZEEJLLOWHTXRtDShGdGaLfQtwbzszoxIwCzCjATE4Olaup4sNgNmEX-8OD_-PfLaRkfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Piecewise linear iterated function systems on the line of overlapping construction</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dániel Prokaj, R ; Simon, Károly</creator><creatorcontrib>Dániel Prokaj, R ; Simon, Károly</creatorcontrib><description>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac355e</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>graph directed iterated function system ; Hausdorff dimension ; piecewise linear dynamics</subject><ispartof>Nonlinearity, 2022-01, Vol.35 (1), p.245-277</ispartof><rights>2021 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</citedby><cites>FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</cites><orcidid>0000-0003-3379-7215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dániel Prokaj, R</creatorcontrib><creatorcontrib>Simon, Károly</creatorcontrib><title>Piecewise linear iterated function systems on the line of overlapping construction</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</description><subject>graph directed iterated function system</subject><subject>Hausdorff dimension</subject><subject>piecewise linear dynamics</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWDcf2yY9yuIXLCii5zBNJ5ql25Qkq-y_d2vFm6d5GZ53GB5CLjm75kzrBZcVL6pyuVyAlWWJR2T2tzomM1aXvFCKl6fkLKUNY5xrIWfk5dmjxS-fkHa-R4jUZ4yQsaVu19vsQ0_TPmXcJnqI-WPiaHA0fGLsYBh8_05t6FOOux_-nJw46BJe_M45ebu7fV09FOun-8fVzbqwQrNcKNROKw0ttM4hr-rGCgGyxKrSTApQspKqgbpVLUpXc6g1b2rZCrZEEJLLOWHTXRtDShGdGaLfQtwbzszoxIwCzCjATE4Olaup4sNgNmEX-8OD_-PfLaRkfg</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Dániel Prokaj, R</creator><creator>Simon, Károly</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3379-7215</orcidid></search><sort><creationdate>20220106</creationdate><title>Piecewise linear iterated function systems on the line of overlapping construction</title><author>Dániel Prokaj, R ; Simon, Károly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>graph directed iterated function system</topic><topic>Hausdorff dimension</topic><topic>piecewise linear dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dániel Prokaj, R</creatorcontrib><creatorcontrib>Simon, Károly</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dániel Prokaj, R</au><au>Simon, Károly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise linear iterated function systems on the line of overlapping construction</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-01-06</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><spage>245</spage><epage>277</epage><pages>245-277</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac355e</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-3379-7215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-01, Vol.35 (1), p.245-277
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ac355e
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects graph directed iterated function system
Hausdorff dimension
piecewise linear dynamics
title Piecewise linear iterated function systems on the line of overlapping construction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise%20linear%20iterated%20function%20systems%20on%20the%20line%20of%20overlapping%20construction&rft.jtitle=Nonlinearity&rft.au=D%C3%A1niel%20Prokaj,%20R&rft.date=2022-01-06&rft.volume=35&rft.issue=1&rft.spage=245&rft.epage=277&rft.pages=245-277&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac355e&rft_dat=%3Ciop_cross%3Enonac355e%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-7e8f878adadffe169bc22a35e668032a73637ba9d7de3f91a981b93d204ea2313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true