Loading…
The strong vanishing viscosity limit with Dirichlet boundary conditions
We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero....
Saved in:
Published in: | Nonlinearity 2023-05, Vol.36 (5), p.2708-2740 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133 |
container_end_page | 2740 |
container_issue | 5 |
container_start_page | 2708 |
container_title | Nonlinearity |
container_volume | 36 |
creator | Kelliher, James P |
description | We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes. |
doi_str_mv | 10.1088/1361-6544/acc50a |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_acc50a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonacc50a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd495ge4Nm-T_chRqlah4KWeQ5LNuq9sNyVJlf57u6z05ukNj5lhZgi5B_YIrK4XwEvIykKIhba2YPqCzM6vSzJjsoCsqqC4JjcxbhkDqHM-I6tN52hMwQ9f9FsPGDscEUbrI6Yj7XGHif5g6ugzBrRd7xI1_jA0Ohyp9UODCf0Qb8lVq_vo7v7unHy-vmyWb9n6Y_W-fFpnNuc8ZWUNpZAlF7XkTmvDnJW8ZG1TOMi5qaQRRrq8sa2ubCEgbw1UwuVGMtlo4HxO2ORrg48xuFbtA-5OWRQwNQ6hxtZqbK2mIU6Sh0mCfq-2_hCGU8D_6b8icGCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kelliher, James P</creator><creatorcontrib>Kelliher, James P</creatorcontrib><description>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/acc50a</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>76D05 ; 76D09 ; Euler equations ; incompressible fluid mechanics ; Navier–Stokes equations ; vanishing viscosity</subject><ispartof>Nonlinearity, 2023-05, Vol.36 (5), p.2708-2740</ispartof><rights>2023 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kelliher, James P</creatorcontrib><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</description><subject>76D05</subject><subject>76D09</subject><subject>Euler equations</subject><subject>incompressible fluid mechanics</subject><subject>Navier–Stokes equations</subject><subject>vanishing viscosity</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrd495ge4Nm-T_chRqlah4KWeQ5LNuq9sNyVJlf57u6z05ukNj5lhZgi5B_YIrK4XwEvIykKIhba2YPqCzM6vSzJjsoCsqqC4JjcxbhkDqHM-I6tN52hMwQ9f9FsPGDscEUbrI6Yj7XGHif5g6ugzBrRd7xI1_jA0Ohyp9UODCf0Qb8lVq_vo7v7unHy-vmyWb9n6Y_W-fFpnNuc8ZWUNpZAlF7XkTmvDnJW8ZG1TOMi5qaQRRrq8sa2ubCEgbw1UwuVGMtlo4HxO2ORrg48xuFbtA-5OWRQwNQ6hxtZqbK2mIU6Sh0mCfq-2_hCGU8D_6b8icGCY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kelliher, James P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><author>Kelliher, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>76D05</topic><topic>76D09</topic><topic>Euler equations</topic><topic>incompressible fluid mechanics</topic><topic>Navier–Stokes equations</topic><topic>vanishing viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelliher, James P</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelliher, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strong vanishing viscosity limit with Dirichlet boundary conditions</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>2708</spage><epage>2740</epage><pages>2708-2740</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/acc50a</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2023-05, Vol.36 (5), p.2708-2740 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_acc50a |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 76D05 76D09 Euler equations incompressible fluid mechanics Navier–Stokes equations vanishing viscosity |
title | The strong vanishing viscosity limit with Dirichlet boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strong%20vanishing%20viscosity%20limit%20with%20Dirichlet%20boundary%20conditions&rft.jtitle=Nonlinearity&rft.au=Kelliher,%20James%20P&rft.date=2023-05-01&rft.volume=36&rft.issue=5&rft.spage=2708&rft.epage=2740&rft.pages=2708-2740&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/acc50a&rft_dat=%3Ciop_cross%3Enonacc50a%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |