Loading…

The strong vanishing viscosity limit with Dirichlet boundary conditions

We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero....

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2023-05, Vol.36 (5), p.2708-2740
Main Author: Kelliher, James P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133
container_end_page 2740
container_issue 5
container_start_page 2708
container_title Nonlinearity
container_volume 36
creator Kelliher, James P
description We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.
doi_str_mv 10.1088/1361-6544/acc50a
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_acc50a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonacc50a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd495ge4Nm-T_chRqlah4KWeQ5LNuq9sNyVJlf57u6z05ukNj5lhZgi5B_YIrK4XwEvIykKIhba2YPqCzM6vSzJjsoCsqqC4JjcxbhkDqHM-I6tN52hMwQ9f9FsPGDscEUbrI6Yj7XGHif5g6ugzBrRd7xI1_jA0Ohyp9UODCf0Qb8lVq_vo7v7unHy-vmyWb9n6Y_W-fFpnNuc8ZWUNpZAlF7XkTmvDnJW8ZG1TOMi5qaQRRrq8sa2ubCEgbw1UwuVGMtlo4HxO2ORrg48xuFbtA-5OWRQwNQ6hxtZqbK2mIU6Sh0mCfq-2_hCGU8D_6b8icGCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kelliher, James P</creator><creatorcontrib>Kelliher, James P</creatorcontrib><description>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/acc50a</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>76D05 ; 76D09 ; Euler equations ; incompressible fluid mechanics ; Navier–Stokes equations ; vanishing viscosity</subject><ispartof>Nonlinearity, 2023-05, Vol.36 (5), p.2708-2740</ispartof><rights>2023 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kelliher, James P</creatorcontrib><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</description><subject>76D05</subject><subject>76D09</subject><subject>Euler equations</subject><subject>incompressible fluid mechanics</subject><subject>Navier–Stokes equations</subject><subject>vanishing viscosity</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrd495ge4Nm-T_chRqlah4KWeQ5LNuq9sNyVJlf57u6z05ukNj5lhZgi5B_YIrK4XwEvIykKIhba2YPqCzM6vSzJjsoCsqqC4JjcxbhkDqHM-I6tN52hMwQ9f9FsPGDscEUbrI6Yj7XGHif5g6ugzBrRd7xI1_jA0Ohyp9UODCf0Qb8lVq_vo7v7unHy-vmyWb9n6Y_W-fFpnNuc8ZWUNpZAlF7XkTmvDnJW8ZG1TOMi5qaQRRrq8sa2ubCEgbw1UwuVGMtlo4HxO2ORrg48xuFbtA-5OWRQwNQ6hxtZqbK2mIU6Sh0mCfq-2_hCGU8D_6b8icGCY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kelliher, James P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>The strong vanishing viscosity limit with Dirichlet boundary conditions</title><author>Kelliher, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>76D05</topic><topic>76D09</topic><topic>Euler equations</topic><topic>incompressible fluid mechanics</topic><topic>Navier–Stokes equations</topic><topic>vanishing viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelliher, James P</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelliher, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strong vanishing viscosity limit with Dirichlet boundary conditions</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>2708</spage><epage>2740</epage><pages>2708-2740</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We adapt methodology of Tosio Kato to establish necessary and sufficient conditions for the solutions to the Navier–Stokes equations with Dirichlet boundary conditions to converge in a strong sense to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend existing conditions for no-slip boundary conditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries, establishing several new conditions as well. We give a brief comparison of various correctors appearing in the literature used for similar purposes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/acc50a</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2023-05, Vol.36 (5), p.2708-2740
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_acc50a
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 76D05
76D09
Euler equations
incompressible fluid mechanics
Navier–Stokes equations
vanishing viscosity
title The strong vanishing viscosity limit with Dirichlet boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strong%20vanishing%20viscosity%20limit%20with%20Dirichlet%20boundary%20conditions&rft.jtitle=Nonlinearity&rft.au=Kelliher,%20James%20P&rft.date=2023-05-01&rft.volume=36&rft.issue=5&rft.spage=2708&rft.epage=2740&rft.pages=2708-2740&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/acc50a&rft_dat=%3Ciop_cross%3Enonacc50a%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-681649634893eaab0ec9360fd5e123b79b4b9e2dcfa7c5412fb174e2b909da133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true