Loading…
Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch
Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase veloci...
Saved in:
Published in: | Physics in medicine & biology 2022-04, Vol.67 (9), p.95015 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533 |
container_end_page | |
container_issue | 9 |
container_start_page | 95015 |
container_title | Physics in medicine & biology |
container_volume | 67 |
creator | Rouze, Ned C Caenen, Annette Nightingale, Kathryn R |
description | Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch.
Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities.
Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom.
Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis. |
doi_str_mv | 10.1088/1361-6560/ac5bfc |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ac5bfc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638021863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCIbgt3Tsg3ODTUTmJvckGqKihIleAAZ2vijDeuktjYzi799zjasgIJLrY8fh8z8wh5xdk7zprmileSF1JIdgVadEY_IZtT6SnZMFbxouVCnJHzGO8Z47wp6-fkrBKlrLZluyGHrwNEpDD3dBfc4ukeR6dtshipcYHGASHQA-yR-uA87CBZN1M7Z0o-tZt8wBhtN-IlHR48BhwhJqvpBAmDhZEebBroMlv4ub5iCpj08II8MzBGfPl4X5DvHz98u_lU3H25_XxzfVfoWopUcCPzYAhdV2rTagNb2bCGAeT2a9FXdSlFX7elMFL2WG2NNFvWNgBoNOOiqi7I-6OuX7oJe41zCjAqH-wE4UE5sOrvn9kOauf2quW85DXLAm8fBYL7sWBMarJR4zjCjG6JKi-yYSVv5OrFjlAdXIwBzcmGM7XmpdZw1BqOOuaVKa__bO9E-B1QBrw5Aqzz6t4tYc7bUn7qlNyqVrFW5DGV701GXv4D-V_nX5oXsUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638021863</pqid></control><display><type>article</type><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</creator><creatorcontrib>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</creatorcontrib><description>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch.
Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities.
Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom.
Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ac5bfc</identifier><identifier>PMID: 35263729</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>elastography ; group velocity ; hyperelastic material ; phase velocity ; shear wave ; uniaxial stretch</subject><ispartof>Physics in medicine & biology, 2022-04, Vol.67 (9), p.95015</ispartof><rights>2022 Institute of Physics and Engineering in Medicine</rights><rights>2022 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</citedby><cites>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</cites><orcidid>0000-0002-4747-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35263729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Caenen, Annette</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch.
Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities.
Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom.
Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</description><subject>elastography</subject><subject>group velocity</subject><subject>hyperelastic material</subject><subject>phase velocity</subject><subject>shear wave</subject><subject>uniaxial stretch</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAQtRCIbgt3Tsg3ODTUTmJvckGqKihIleAAZ2vijDeuktjYzi799zjasgIJLrY8fh8z8wh5xdk7zprmileSF1JIdgVadEY_IZtT6SnZMFbxouVCnJHzGO8Z47wp6-fkrBKlrLZluyGHrwNEpDD3dBfc4ukeR6dtshipcYHGASHQA-yR-uA87CBZN1M7Z0o-tZt8wBhtN-IlHR48BhwhJqvpBAmDhZEebBroMlv4ub5iCpj08II8MzBGfPl4X5DvHz98u_lU3H25_XxzfVfoWopUcCPzYAhdV2rTagNb2bCGAeT2a9FXdSlFX7elMFL2WG2NNFvWNgBoNOOiqi7I-6OuX7oJe41zCjAqH-wE4UE5sOrvn9kOauf2quW85DXLAm8fBYL7sWBMarJR4zjCjG6JKi-yYSVv5OrFjlAdXIwBzcmGM7XmpdZw1BqOOuaVKa__bO9E-B1QBrw5Aqzz6t4tYc7bUn7qlNyqVrFW5DGV701GXv4D-V_nX5oXsUg</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Rouze, Ned C</creator><creator>Caenen, Annette</creator><creator>Nightingale, Kathryn R</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4747-6482</orcidid></search><sort><creationdate>20220427</creationdate><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><author>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>elastography</topic><topic>group velocity</topic><topic>hyperelastic material</topic><topic>phase velocity</topic><topic>shear wave</topic><topic>uniaxial stretch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Caenen, Annette</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouze, Ned C</au><au>Caenen, Annette</au><au>Nightingale, Kathryn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>67</volume><issue>9</issue><spage>95015</spage><pages>95015-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch.
Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities.
Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom.
Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35263729</pmid><doi>10.1088/1361-6560/ac5bfc</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4747-6482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2022-04, Vol.67 (9), p.95015 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_ac5bfc |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | elastography group velocity hyperelastic material phase velocity shear wave uniaxial stretch |
title | Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20and%20group%20velocities%20for%20shear%20wave%20propagation%20in%20an%20incompressible,%20hyperelastic%20material%20with%20uniaxial%20stretch&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Rouze,%20Ned%20C&rft.date=2022-04-27&rft.volume=67&rft.issue=9&rft.spage=95015&rft.pages=95015-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ac5bfc&rft_dat=%3Cproquest_cross%3E2638021863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638021863&rft_id=info:pmid/35263729&rfr_iscdi=true |