Loading…

Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch

Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase veloci...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2022-04, Vol.67 (9), p.95015
Main Authors: Rouze, Ned C, Caenen, Annette, Nightingale, Kathryn R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533
cites cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533
container_end_page
container_issue 9
container_start_page 95015
container_title Physics in medicine & biology
container_volume 67
creator Rouze, Ned C
Caenen, Annette
Nightingale, Kathryn R
description Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch. Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities. Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom. Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.
doi_str_mv 10.1088/1361-6560/ac5bfc
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ac5bfc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638021863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCIbgt3Tsg3ODTUTmJvckGqKihIleAAZ2vijDeuktjYzi799zjasgIJLrY8fh8z8wh5xdk7zprmileSF1JIdgVadEY_IZtT6SnZMFbxouVCnJHzGO8Z47wp6-fkrBKlrLZluyGHrwNEpDD3dBfc4ukeR6dtshipcYHGASHQA-yR-uA87CBZN1M7Z0o-tZt8wBhtN-IlHR48BhwhJqvpBAmDhZEebBroMlv4ub5iCpj08II8MzBGfPl4X5DvHz98u_lU3H25_XxzfVfoWopUcCPzYAhdV2rTagNb2bCGAeT2a9FXdSlFX7elMFL2WG2NNFvWNgBoNOOiqi7I-6OuX7oJe41zCjAqH-wE4UE5sOrvn9kOauf2quW85DXLAm8fBYL7sWBMarJR4zjCjG6JKi-yYSVv5OrFjlAdXIwBzcmGM7XmpdZw1BqOOuaVKa__bO9E-B1QBrw5Aqzz6t4tYc7bUn7qlNyqVrFW5DGV701GXv4D-V_nX5oXsUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638021863</pqid></control><display><type>article</type><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</creator><creatorcontrib>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</creatorcontrib><description>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch. Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities. Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom. Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ac5bfc</identifier><identifier>PMID: 35263729</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>elastography ; group velocity ; hyperelastic material ; phase velocity ; shear wave ; uniaxial stretch</subject><ispartof>Physics in medicine &amp; biology, 2022-04, Vol.67 (9), p.95015</ispartof><rights>2022 Institute of Physics and Engineering in Medicine</rights><rights>2022 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</citedby><cites>FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</cites><orcidid>0000-0002-4747-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35263729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Caenen, Annette</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch. Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities. Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom. Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</description><subject>elastography</subject><subject>group velocity</subject><subject>hyperelastic material</subject><subject>phase velocity</subject><subject>shear wave</subject><subject>uniaxial stretch</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAQtRCIbgt3Tsg3ODTUTmJvckGqKihIleAAZ2vijDeuktjYzi799zjasgIJLrY8fh8z8wh5xdk7zprmileSF1JIdgVadEY_IZtT6SnZMFbxouVCnJHzGO8Z47wp6-fkrBKlrLZluyGHrwNEpDD3dBfc4ukeR6dtshipcYHGASHQA-yR-uA87CBZN1M7Z0o-tZt8wBhtN-IlHR48BhwhJqvpBAmDhZEebBroMlv4ub5iCpj08II8MzBGfPl4X5DvHz98u_lU3H25_XxzfVfoWopUcCPzYAhdV2rTagNb2bCGAeT2a9FXdSlFX7elMFL2WG2NNFvWNgBoNOOiqi7I-6OuX7oJe41zCjAqH-wE4UE5sOrvn9kOauf2quW85DXLAm8fBYL7sWBMarJR4zjCjG6JKi-yYSVv5OrFjlAdXIwBzcmGM7XmpdZw1BqOOuaVKa__bO9E-B1QBrw5Aqzz6t4tYc7bUn7qlNyqVrFW5DGV701GXv4D-V_nX5oXsUg</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Rouze, Ned C</creator><creator>Caenen, Annette</creator><creator>Nightingale, Kathryn R</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4747-6482</orcidid></search><sort><creationdate>20220427</creationdate><title>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</title><author>Rouze, Ned C ; Caenen, Annette ; Nightingale, Kathryn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>elastography</topic><topic>group velocity</topic><topic>hyperelastic material</topic><topic>phase velocity</topic><topic>shear wave</topic><topic>uniaxial stretch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Caenen, Annette</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouze, Ned C</au><au>Caenen, Annette</au><au>Nightingale, Kathryn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>67</volume><issue>9</issue><spage>95015</spage><pages>95015-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch. Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities. Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom. Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35263729</pmid><doi>10.1088/1361-6560/ac5bfc</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4747-6482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2022-04, Vol.67 (9), p.95015
issn 0031-9155
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_ac5bfc
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects elastography
group velocity
hyperelastic material
phase velocity
shear wave
uniaxial stretch
title Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20and%20group%20velocities%20for%20shear%20wave%20propagation%20in%20an%20incompressible,%20hyperelastic%20material%20with%20uniaxial%20stretch&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Rouze,%20Ned%20C&rft.date=2022-04-27&rft.volume=67&rft.issue=9&rft.spage=95015&rft.pages=95015-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ac5bfc&rft_dat=%3Cproquest_cross%3E2638021863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-1f6c5beabb2cf9cfa768080aa63745d34265d4925f66de37f6f7098aaefc01533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638021863&rft_id=info:pmid/35263729&rfr_iscdi=true