Loading…

A multimodal model fusing multiphase contrast-enhanced CT and clinical characteristics for predicting lymph node metastases of pancreatic cancer

To develop a multimodal model that combines multiphase contrast-enhanced computed tomography (CECT) imaging and clinical characteristics, including experts' experience, to preoperatively predict lymph node metastasis (LNM) in pancreatic cancer patients. We proposed a new classifier fusion strat...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2022-09, Vol.67 (17), p.175002
Main Authors: Lu, Qian, Zhou, Chenjie, Zhang, Haojie, Liang, Lidu, Zhang, Qifan, Chen, Xuemin, Xu, Xiaowu, Zhao, Guodong, Ma, Jianhua, Gao, Yi, Peng, Qing, Li, Shulong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To develop a multimodal model that combines multiphase contrast-enhanced computed tomography (CECT) imaging and clinical characteristics, including experts' experience, to preoperatively predict lymph node metastasis (LNM) in pancreatic cancer patients. We proposed a new classifier fusion strategy (CFS) based on a new evidential reasoning (ER) rule (CFS-nER) by combining nomogram weights into a previous ER rule-based CFS. Three kernelled support tensor machine-based classifiers with plain, arterial, and venous phases of CECT as the inputs, respectively, were constructed. They were then fused based on the CFS-nER to construct a fusion model of multiphase CECT. The clinical characteristics were analyzed by univariate and multivariable logistic regression to screen risk factors, which were used to construct correspondent risk factor-based classifiers. Finally, the fusion model of the three phases of CECT and each risk factor-based classifier were fused further to construct the multimodal model based on our CFS-nER, named MMM-nER. This study consisted of 186 patients diagnosed with pancreatic cancer from four clinical centers in China, 88 (47.31%) of whom had LNM. The fusion model of the three phases of CECT performed better overall than single and two-phase fusion models; this implies that the three considered phases of CECT were supplementary and complemented one another. The MMM-nER further improved the predictive performance, which implies that our MMM-nER can complement the supplementary information between CECT and clinical characteristics. The MMM-nER had better predictive performance than based on previous classifier fusion strategies, which presents the advantage of our CFS-nER. We proposed a new CFS-nER, based on which the fusion model of the three phases of CECT and MMM-nER were constructed and performed better than all compared methods. MMM-nER achieved an encouraging performance, implying that it can assist clinicians in noninvasively and preoperatively evaluating the lymph node status of pancreatic cancer.
ISSN:0031-9155
1361-6560
DOI:10.1088/1361-6560/ac858e