Loading…
Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images
Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising re...
Saved in:
Published in: | Physics in medicine & biology 2024-08, Vol.69 (16), p.165018 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-e4644039dd06095974394071e02d986e31db4da3e94d32ce7a9868a05c0b5e603 |
container_end_page | |
container_issue | 16 |
container_start_page | 165018 |
container_title | Physics in medicine & biology |
container_volume | 69 |
creator | Ren, Jintao Teuwen, Jonas Nijkamp, Jasper Rasmussen, Mathis Gouw, Zeno Grau Eriksen, Jesper Sonke, Jan-Jakob Korreman, Stine |
description | Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising reliability. Incorporating uncertainty estimation, which provides calibrated confidence intervals can address this issue. Our aim was to investigate the efficacy of various uncertainty estimation methods in improving segmentation reliability. We evaluated their confidence levels in voxel predictions and ability to reveal potential segmentation errors. Approach. We retrospectively collected data from 567 HNC patients with diverse cancer sites and multi-modality images (CT, PET, T1-, and T2-weighted MRI) along with their clinical GTV-T/N delineations. Using the nnUNet 3D segmentation pipeline, we compared seven uncertainty estimation methods, evaluating them based on segmentation accuracy (Dice similarity coefficient, DSC), confidence calibration (Expected Calibration Error, ECE), and their ability to reveal segmentation errors (Uncertainty-Error overlap using DSC, UE-DSC). Main Results. Evaluated on the hold-out test dataset (n=97), the median DSC scores for GTV-T and GTV-N segmentation across all uncertainty estimation methods had a narrow range, from 0.73 to 0.76 and 0.78 to 0.80, respectively. In contrast, the median ECE exhibited a wider range, from 0.30 to 0.12 for GTV-T and 0.25 to 0.09 for GTV-N. Similarly, the median UE-DSC also ranged broadly, from 0.21 to 0.38 for GTV-T and 0.22 to 0.36 for GTV-N. A probabilistic network - PhiSeg method consistently demonstrated the best performance in terms of ECE and UE-DSC. Significance. Our study highlights the importance of uncertainty estimation in enhancing the reliability of deep learning for autosegmentation of HNC GTV. The results show that while segmentation accuracy can be similar across methods, their reliability, measured by calibration error and uncertainty-error overlap, varies significantly. Used with visualisation maps, these methods may effectively pinpoint uncertainties and potential errors at the voxel level.
. |
doi_str_mv | 10.1088/1361-6560/ad682d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ad682d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085114237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e4644039dd06095974394071e02d986e31db4da3e94d32ce7a9868a05c0b5e603</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EglLYmZBHBgLn2EnjESG-pEosMFtOfG0NiVNsR6i_gL-Nq5RuTCfdPffq7iHkgsENg6q6ZbxkWVmUcKtNWeXmgEz2rUMyAeAsk6woTshpCB8AjFW5OCYnXEIhBc8n5OfBrbRrrFvSuELqsbW6tq2NG9ovqEFc0xa1dwnIah3Q0BVqQ7Uz1GHzSePQ9YOnAZcduqij7R0dwjZucA36qK1LURii7cbht40r2g1ttFnXG93SNFhiOCNHC90GPN_VKXl_fHi7f87mr08v93fzrMmZjBmKUgjg0hgoQRZyJrgUMGMIuZFViZyZWhjNUQrD8wZnOnUrDUUDdYEl8Cm5GnPXvv8a0l2qs6HBttUO-yEoDlXBmMj5LKEwoo3vQ_C4UGufjvUbxUBt9auta7V1rUb9aeVylz7UHZr9wp_vBFyPgO3X6iOZc-nZ__N-Ab0kkFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085114237</pqid></control><display><type>article</type><title>Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images</title><source>Institute of Physics</source><creator>Ren, Jintao ; Teuwen, Jonas ; Nijkamp, Jasper ; Rasmussen, Mathis ; Gouw, Zeno ; Grau Eriksen, Jesper ; Sonke, Jan-Jakob ; Korreman, Stine</creator><creatorcontrib>Ren, Jintao ; Teuwen, Jonas ; Nijkamp, Jasper ; Rasmussen, Mathis ; Gouw, Zeno ; Grau Eriksen, Jesper ; Sonke, Jan-Jakob ; Korreman, Stine</creatorcontrib><description>Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising reliability. Incorporating uncertainty estimation, which provides calibrated confidence intervals can address this issue. Our aim was to investigate the efficacy of various uncertainty estimation methods in improving segmentation reliability. We evaluated their confidence levels in voxel predictions and ability to reveal potential segmentation errors. Approach. We retrospectively collected data from 567 HNC patients with diverse cancer sites and multi-modality images (CT, PET, T1-, and T2-weighted MRI) along with their clinical GTV-T/N delineations. Using the nnUNet 3D segmentation pipeline, we compared seven uncertainty estimation methods, evaluating them based on segmentation accuracy (Dice similarity coefficient, DSC), confidence calibration (Expected Calibration Error, ECE), and their ability to reveal segmentation errors (Uncertainty-Error overlap using DSC, UE-DSC). Main Results. Evaluated on the hold-out test dataset (n=97), the median DSC scores for GTV-T and GTV-N segmentation across all uncertainty estimation methods had a narrow range, from 0.73 to 0.76 and 0.78 to 0.80, respectively. In contrast, the median ECE exhibited a wider range, from 0.30 to 0.12 for GTV-T and 0.25 to 0.09 for GTV-N. Similarly, the median UE-DSC also ranged broadly, from 0.21 to 0.38 for GTV-T and 0.22 to 0.36 for GTV-N. A probabilistic network - PhiSeg method consistently demonstrated the best performance in terms of ECE and UE-DSC. Significance. Our study highlights the importance of uncertainty estimation in enhancing the reliability of deep learning for autosegmentation of HNC GTV. The results show that while segmentation accuracy can be similar across methods, their reliability, measured by calibration error and uncertainty-error overlap, varies significantly. Used with visualisation maps, these methods may effectively pinpoint uncertainties and potential errors at the voxel level.&#xD.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad682d</identifier><identifier>PMID: 39059432</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>deep learning ; gross tumour volume ; head and neck cancer ; radiotherapy ; tumour segmentation ; uncertainty estimation ; uncertainty quantification</subject><ispartof>Physics in medicine & biology, 2024-08, Vol.69 (16), p.165018</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-e4644039dd06095974394071e02d986e31db4da3e94d32ce7a9868a05c0b5e603</cites><orcidid>0000-0001-5155-5274 ; 0000-0002-1558-7196 ; 0000-0001-6206-6839 ; 0000-0002-1825-1428 ; 0000-0001-7523-5881 ; 0000-0002-1145-6033 ; 0000-0002-3523-382X ; 0000-0002-7853-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39059432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Teuwen, Jonas</creatorcontrib><creatorcontrib>Nijkamp, Jasper</creatorcontrib><creatorcontrib>Rasmussen, Mathis</creatorcontrib><creatorcontrib>Gouw, Zeno</creatorcontrib><creatorcontrib>Grau Eriksen, Jesper</creatorcontrib><creatorcontrib>Sonke, Jan-Jakob</creatorcontrib><creatorcontrib>Korreman, Stine</creatorcontrib><title>Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising reliability. Incorporating uncertainty estimation, which provides calibrated confidence intervals can address this issue. Our aim was to investigate the efficacy of various uncertainty estimation methods in improving segmentation reliability. We evaluated their confidence levels in voxel predictions and ability to reveal potential segmentation errors. Approach. We retrospectively collected data from 567 HNC patients with diverse cancer sites and multi-modality images (CT, PET, T1-, and T2-weighted MRI) along with their clinical GTV-T/N delineations. Using the nnUNet 3D segmentation pipeline, we compared seven uncertainty estimation methods, evaluating them based on segmentation accuracy (Dice similarity coefficient, DSC), confidence calibration (Expected Calibration Error, ECE), and their ability to reveal segmentation errors (Uncertainty-Error overlap using DSC, UE-DSC). Main Results. Evaluated on the hold-out test dataset (n=97), the median DSC scores for GTV-T and GTV-N segmentation across all uncertainty estimation methods had a narrow range, from 0.73 to 0.76 and 0.78 to 0.80, respectively. In contrast, the median ECE exhibited a wider range, from 0.30 to 0.12 for GTV-T and 0.25 to 0.09 for GTV-N. Similarly, the median UE-DSC also ranged broadly, from 0.21 to 0.38 for GTV-T and 0.22 to 0.36 for GTV-N. A probabilistic network - PhiSeg method consistently demonstrated the best performance in terms of ECE and UE-DSC. Significance. Our study highlights the importance of uncertainty estimation in enhancing the reliability of deep learning for autosegmentation of HNC GTV. The results show that while segmentation accuracy can be similar across methods, their reliability, measured by calibration error and uncertainty-error overlap, varies significantly. Used with visualisation maps, these methods may effectively pinpoint uncertainties and potential errors at the voxel level.&#xD.</description><subject>deep learning</subject><subject>gross tumour volume</subject><subject>head and neck cancer</subject><subject>radiotherapy</subject><subject>tumour segmentation</subject><subject>uncertainty estimation</subject><subject>uncertainty quantification</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EglLYmZBHBgLn2EnjESG-pEosMFtOfG0NiVNsR6i_gL-Nq5RuTCfdPffq7iHkgsENg6q6ZbxkWVmUcKtNWeXmgEz2rUMyAeAsk6woTshpCB8AjFW5OCYnXEIhBc8n5OfBrbRrrFvSuELqsbW6tq2NG9ovqEFc0xa1dwnIah3Q0BVqQ7Uz1GHzSePQ9YOnAZcduqij7R0dwjZucA36qK1LURii7cbht40r2g1ttFnXG93SNFhiOCNHC90GPN_VKXl_fHi7f87mr08v93fzrMmZjBmKUgjg0hgoQRZyJrgUMGMIuZFViZyZWhjNUQrD8wZnOnUrDUUDdYEl8Cm5GnPXvv8a0l2qs6HBttUO-yEoDlXBmMj5LKEwoo3vQ_C4UGufjvUbxUBt9auta7V1rUb9aeVylz7UHZr9wp_vBFyPgO3X6iOZc-nZ__N-Ab0kkFI</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Ren, Jintao</creator><creator>Teuwen, Jonas</creator><creator>Nijkamp, Jasper</creator><creator>Rasmussen, Mathis</creator><creator>Gouw, Zeno</creator><creator>Grau Eriksen, Jesper</creator><creator>Sonke, Jan-Jakob</creator><creator>Korreman, Stine</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5155-5274</orcidid><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0001-6206-6839</orcidid><orcidid>https://orcid.org/0000-0002-1825-1428</orcidid><orcidid>https://orcid.org/0000-0001-7523-5881</orcidid><orcidid>https://orcid.org/0000-0002-1145-6033</orcidid><orcidid>https://orcid.org/0000-0002-3523-382X</orcidid><orcidid>https://orcid.org/0000-0002-7853-3531</orcidid></search><sort><creationdate>20240821</creationdate><title>Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images</title><author>Ren, Jintao ; Teuwen, Jonas ; Nijkamp, Jasper ; Rasmussen, Mathis ; Gouw, Zeno ; Grau Eriksen, Jesper ; Sonke, Jan-Jakob ; Korreman, Stine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e4644039dd06095974394071e02d986e31db4da3e94d32ce7a9868a05c0b5e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep learning</topic><topic>gross tumour volume</topic><topic>head and neck cancer</topic><topic>radiotherapy</topic><topic>tumour segmentation</topic><topic>uncertainty estimation</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Teuwen, Jonas</creatorcontrib><creatorcontrib>Nijkamp, Jasper</creatorcontrib><creatorcontrib>Rasmussen, Mathis</creatorcontrib><creatorcontrib>Gouw, Zeno</creatorcontrib><creatorcontrib>Grau Eriksen, Jesper</creatorcontrib><creatorcontrib>Sonke, Jan-Jakob</creatorcontrib><creatorcontrib>Korreman, Stine</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Jintao</au><au>Teuwen, Jonas</au><au>Nijkamp, Jasper</au><au>Rasmussen, Mathis</au><au>Gouw, Zeno</au><au>Grau Eriksen, Jesper</au><au>Sonke, Jan-Jakob</au><au>Korreman, Stine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>69</volume><issue>16</issue><spage>165018</spage><pages>165018-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising reliability. Incorporating uncertainty estimation, which provides calibrated confidence intervals can address this issue. Our aim was to investigate the efficacy of various uncertainty estimation methods in improving segmentation reliability. We evaluated their confidence levels in voxel predictions and ability to reveal potential segmentation errors. Approach. We retrospectively collected data from 567 HNC patients with diverse cancer sites and multi-modality images (CT, PET, T1-, and T2-weighted MRI) along with their clinical GTV-T/N delineations. Using the nnUNet 3D segmentation pipeline, we compared seven uncertainty estimation methods, evaluating them based on segmentation accuracy (Dice similarity coefficient, DSC), confidence calibration (Expected Calibration Error, ECE), and their ability to reveal segmentation errors (Uncertainty-Error overlap using DSC, UE-DSC). Main Results. Evaluated on the hold-out test dataset (n=97), the median DSC scores for GTV-T and GTV-N segmentation across all uncertainty estimation methods had a narrow range, from 0.73 to 0.76 and 0.78 to 0.80, respectively. In contrast, the median ECE exhibited a wider range, from 0.30 to 0.12 for GTV-T and 0.25 to 0.09 for GTV-N. Similarly, the median UE-DSC also ranged broadly, from 0.21 to 0.38 for GTV-T and 0.22 to 0.36 for GTV-N. A probabilistic network - PhiSeg method consistently demonstrated the best performance in terms of ECE and UE-DSC. Significance. Our study highlights the importance of uncertainty estimation in enhancing the reliability of deep learning for autosegmentation of HNC GTV. The results show that while segmentation accuracy can be similar across methods, their reliability, measured by calibration error and uncertainty-error overlap, varies significantly. Used with visualisation maps, these methods may effectively pinpoint uncertainties and potential errors at the voxel level.&#xD.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39059432</pmid><doi>10.1088/1361-6560/ad682d</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5155-5274</orcidid><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0001-6206-6839</orcidid><orcidid>https://orcid.org/0000-0002-1825-1428</orcidid><orcidid>https://orcid.org/0000-0001-7523-5881</orcidid><orcidid>https://orcid.org/0000-0002-1145-6033</orcidid><orcidid>https://orcid.org/0000-0002-3523-382X</orcidid><orcidid>https://orcid.org/0000-0002-7853-3531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2024-08, Vol.69 (16), p.165018 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_ad682d |
source | Institute of Physics |
subjects | deep learning gross tumour volume head and neck cancer radiotherapy tumour segmentation uncertainty estimation uncertainty quantification |
title | Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20reliability%20of%20deep%20learning-based%20head%20and%20neck%20tumour%20segmentation%20using%20uncertainty%20estimation%20with%20multi-modal%20images&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Ren,%20Jintao&rft.date=2024-08-21&rft.volume=69&rft.issue=16&rft.spage=165018&rft.pages=165018-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad682d&rft_dat=%3Cproquest_cross%3E3085114237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-e4644039dd06095974394071e02d986e31db4da3e94d32ce7a9868a05c0b5e603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085114237&rft_id=info:pmid/39059432&rfr_iscdi=true |