Loading…

Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses

Achieving ultra-precise temporal resolution in ionizing radiation detection is essential, particularly in positron emission tomography, where precise timing enhances signal-to-noise ratios and may enable reconstruction-less imaging. A promising approach involves utilizing ultrafast modulation of the...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2024-11, Vol.69 (23), p.235010
Main Authors: Jeong, Diana, Bark, Hyeon Sang, Kim, Yushin, Shin, Junho, Kim, Hyun Woo, Oang, Key Young, Jang, Kyu-Ha, Lee, Kitae, Jeong, Young Uk, Baek, In Hyung, Levin, Craig S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-f0c8c58c5623a15b8b7690db870615721a93dfb9479e8e05b1bca12e9ea39c9f3
container_end_page
container_issue 23
container_start_page 235010
container_title Physics in medicine & biology
container_volume 69
creator Jeong, Diana
Bark, Hyeon Sang
Kim, Yushin
Shin, Junho
Kim, Hyun Woo
Oang, Key Young
Jang, Kyu-Ha
Lee, Kitae
Jeong, Young Uk
Baek, In Hyung
Levin, Craig S
description Achieving ultra-precise temporal resolution in ionizing radiation detection is essential, particularly in positron emission tomography, where precise timing enhances signal-to-noise ratios and may enable reconstruction-less imaging. A promising approach involves utilizing ultrafast modulation of the complex refractive index, where sending probe pulses to the detection crystals will result in changes in picoseconds (ps), and thus a sub-10 ps coincidence time resolution can be realized. Towards this goal, here, we aim to first measure the ps changes in probe pulses using an ionizing radiation source with high time resolution We used relativistic, ultrafast electrons to induce complex refractive index and use probe pulses in the near-infrared (800 nm) and terahertz (THz, 300 m) regimes to test the hypothesized wavelength-squared increase in absorption coefficient in the Drude free-carrier absorption model. We measured BGO, ZnSe, BaF , ZnS, PBG, and PWO with 1 mm thickness to control the deposited energy of the 3 MeV electrons, simulating ionization energy of the 511 keV photons. Both with the 800 nm and THz probe pulses, transmission decreased across most samples, indicating the free carrier absorption, with an induced signal change of 11% in BaF , but without the predicted Drude modulation increase. To understand this discrepancy, we simulated ionization tracks and examined the geometry of the free carrier distribution, attributing the mismatch in THz modulations to the sub-wavelength diameter of trajectories, despite the lengths reaching 500 m to 1 mm. Additionally, thin samples truncated the final segments of the ionization tracks, and the measured initial segments have larger inter-inelastic collision distances due to lower stopping power (d /d ) for high-energy electrons, exacerbating diffraction-limited resolution. Our work offers insights into ultrafast radiation detection using complex refractive index modulation and highlights critical considerations in sample preparation, probe wavelength, and probe-charge carrier coupling scenarios.
doi_str_mv 10.1088/1361-6560/ad8832
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ad8832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117993760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-f0c8c58c5623a15b8b7690db870615721a93dfb9479e8e05b1bca12e9ea39c9f3</originalsourceid><addsrcrecordid>eNp1kM1r3DAQxUVpabZJ7j0VHXuoG421sqVjCEm3EMgh6Vnoy0HBtlx9hGxv_c8rs0l6aWFgxPDem9EPoY9AvgLh_AxoB03HOnKmLOe0fYM2r6O3aEMIhUYAY0foQ0oPhADwdvseHVGxBUH4doN-3-Zi9zgMeAq2jCr7MGM_YxOmZXRPOLohKpP9o6tT641Lay_GWaz3uIw5qkGlXHWr99Gn7A12ozM5hjnhkvx8Xx01JFaLmi2-2_3CSwza4aWMyaUT9G5Q9XH63I_Rj6vLu4tdc33z7fvF-XVjWtbmZiCGG1ara6kCprnuO0Gs5j3pgPUtKEHtoMW2F447wjRoo6B1wikqjBjoMfp8yK3LfxaXspx8Mm4c1exCSZIC9ELQviNVSg5SE0NKFYFcop9U3EsgcgUvV8pypSwP4Kvl03N60ZOzr4YX0n_X-7DIh1DiXD8rl0nLTsiW1mKkpi92vfTLP6T_Xf0H0_OcBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117993760</pqid></control><display><type>article</type><title>Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Jeong, Diana ; Bark, Hyeon Sang ; Kim, Yushin ; Shin, Junho ; Kim, Hyun Woo ; Oang, Key Young ; Jang, Kyu-Ha ; Lee, Kitae ; Jeong, Young Uk ; Baek, In Hyung ; Levin, Craig S</creator><creatorcontrib>Jeong, Diana ; Bark, Hyeon Sang ; Kim, Yushin ; Shin, Junho ; Kim, Hyun Woo ; Oang, Key Young ; Jang, Kyu-Ha ; Lee, Kitae ; Jeong, Young Uk ; Baek, In Hyung ; Levin, Craig S</creatorcontrib><description>Achieving ultra-precise temporal resolution in ionizing radiation detection is essential, particularly in positron emission tomography, where precise timing enhances signal-to-noise ratios and may enable reconstruction-less imaging. A promising approach involves utilizing ultrafast modulation of the complex refractive index, where sending probe pulses to the detection crystals will result in changes in picoseconds (ps), and thus a sub-10 ps coincidence time resolution can be realized. Towards this goal, here, we aim to first measure the ps changes in probe pulses using an ionizing radiation source with high time resolution We used relativistic, ultrafast electrons to induce complex refractive index and use probe pulses in the near-infrared (800 nm) and terahertz (THz, 300 m) regimes to test the hypothesized wavelength-squared increase in absorption coefficient in the Drude free-carrier absorption model. We measured BGO, ZnSe, BaF , ZnS, PBG, and PWO with 1 mm thickness to control the deposited energy of the 3 MeV electrons, simulating ionization energy of the 511 keV photons. Both with the 800 nm and THz probe pulses, transmission decreased across most samples, indicating the free carrier absorption, with an induced signal change of 11% in BaF , but without the predicted Drude modulation increase. To understand this discrepancy, we simulated ionization tracks and examined the geometry of the free carrier distribution, attributing the mismatch in THz modulations to the sub-wavelength diameter of trajectories, despite the lengths reaching 500 m to 1 mm. Additionally, thin samples truncated the final segments of the ionization tracks, and the measured initial segments have larger inter-inelastic collision distances due to lower stopping power (d /d ) for high-energy electrons, exacerbating diffraction-limited resolution. Our work offers insights into ultrafast radiation detection using complex refractive index modulation and highlights critical considerations in sample preparation, probe wavelength, and probe-charge carrier coupling scenarios.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad8832</identifier><identifier>PMID: 39419084</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>coincidence time resolution ; Electrons ; Infrared Rays ; modulation in complex refractive index ; radiation detection ; Refractometry ; Terahertz Radiation ; Time Factors ; time-of-flight positron emission tomography</subject><ispartof>Physics in medicine &amp; biology, 2024-11, Vol.69 (23), p.235010</ispartof><rights>2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-f0c8c58c5623a15b8b7690db870615721a93dfb9479e8e05b1bca12e9ea39c9f3</cites><orcidid>0000-0002-1139-0118 ; 0000-0002-4054-4155 ; 0000-0002-5823-0699 ; 0000-0002-4575-5074 ; 0000-0002-1259-1982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Diana</creatorcontrib><creatorcontrib>Bark, Hyeon Sang</creatorcontrib><creatorcontrib>Kim, Yushin</creatorcontrib><creatorcontrib>Shin, Junho</creatorcontrib><creatorcontrib>Kim, Hyun Woo</creatorcontrib><creatorcontrib>Oang, Key Young</creatorcontrib><creatorcontrib>Jang, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Jeong, Young Uk</creatorcontrib><creatorcontrib>Baek, In Hyung</creatorcontrib><creatorcontrib>Levin, Craig S</creatorcontrib><title>Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Achieving ultra-precise temporal resolution in ionizing radiation detection is essential, particularly in positron emission tomography, where precise timing enhances signal-to-noise ratios and may enable reconstruction-less imaging. A promising approach involves utilizing ultrafast modulation of the complex refractive index, where sending probe pulses to the detection crystals will result in changes in picoseconds (ps), and thus a sub-10 ps coincidence time resolution can be realized. Towards this goal, here, we aim to first measure the ps changes in probe pulses using an ionizing radiation source with high time resolution We used relativistic, ultrafast electrons to induce complex refractive index and use probe pulses in the near-infrared (800 nm) and terahertz (THz, 300 m) regimes to test the hypothesized wavelength-squared increase in absorption coefficient in the Drude free-carrier absorption model. We measured BGO, ZnSe, BaF , ZnS, PBG, and PWO with 1 mm thickness to control the deposited energy of the 3 MeV electrons, simulating ionization energy of the 511 keV photons. Both with the 800 nm and THz probe pulses, transmission decreased across most samples, indicating the free carrier absorption, with an induced signal change of 11% in BaF , but without the predicted Drude modulation increase. To understand this discrepancy, we simulated ionization tracks and examined the geometry of the free carrier distribution, attributing the mismatch in THz modulations to the sub-wavelength diameter of trajectories, despite the lengths reaching 500 m to 1 mm. Additionally, thin samples truncated the final segments of the ionization tracks, and the measured initial segments have larger inter-inelastic collision distances due to lower stopping power (d /d ) for high-energy electrons, exacerbating diffraction-limited resolution. Our work offers insights into ultrafast radiation detection using complex refractive index modulation and highlights critical considerations in sample preparation, probe wavelength, and probe-charge carrier coupling scenarios.</description><subject>coincidence time resolution</subject><subject>Electrons</subject><subject>Infrared Rays</subject><subject>modulation in complex refractive index</subject><subject>radiation detection</subject><subject>Refractometry</subject><subject>Terahertz Radiation</subject><subject>Time Factors</subject><subject>time-of-flight positron emission tomography</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1r3DAQxUVpabZJ7j0VHXuoG421sqVjCEm3EMgh6Vnoy0HBtlx9hGxv_c8rs0l6aWFgxPDem9EPoY9AvgLh_AxoB03HOnKmLOe0fYM2r6O3aEMIhUYAY0foQ0oPhADwdvseHVGxBUH4doN-3-Zi9zgMeAq2jCr7MGM_YxOmZXRPOLohKpP9o6tT641Lay_GWaz3uIw5qkGlXHWr99Gn7A12ozM5hjnhkvx8Xx01JFaLmi2-2_3CSwza4aWMyaUT9G5Q9XH63I_Rj6vLu4tdc33z7fvF-XVjWtbmZiCGG1ara6kCprnuO0Gs5j3pgPUtKEHtoMW2F447wjRoo6B1wikqjBjoMfp8yK3LfxaXspx8Mm4c1exCSZIC9ELQviNVSg5SE0NKFYFcop9U3EsgcgUvV8pypSwP4Kvl03N60ZOzr4YX0n_X-7DIh1DiXD8rl0nLTsiW1mKkpi92vfTLP6T_Xf0H0_OcBA</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Jeong, Diana</creator><creator>Bark, Hyeon Sang</creator><creator>Kim, Yushin</creator><creator>Shin, Junho</creator><creator>Kim, Hyun Woo</creator><creator>Oang, Key Young</creator><creator>Jang, Kyu-Ha</creator><creator>Lee, Kitae</creator><creator>Jeong, Young Uk</creator><creator>Baek, In Hyung</creator><creator>Levin, Craig S</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1139-0118</orcidid><orcidid>https://orcid.org/0000-0002-4054-4155</orcidid><orcidid>https://orcid.org/0000-0002-5823-0699</orcidid><orcidid>https://orcid.org/0000-0002-4575-5074</orcidid><orcidid>https://orcid.org/0000-0002-1259-1982</orcidid></search><sort><creationdate>20241129</creationdate><title>Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses</title><author>Jeong, Diana ; Bark, Hyeon Sang ; Kim, Yushin ; Shin, Junho ; Kim, Hyun Woo ; Oang, Key Young ; Jang, Kyu-Ha ; Lee, Kitae ; Jeong, Young Uk ; Baek, In Hyung ; Levin, Craig S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-f0c8c58c5623a15b8b7690db870615721a93dfb9479e8e05b1bca12e9ea39c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>coincidence time resolution</topic><topic>Electrons</topic><topic>Infrared Rays</topic><topic>modulation in complex refractive index</topic><topic>radiation detection</topic><topic>Refractometry</topic><topic>Terahertz Radiation</topic><topic>Time Factors</topic><topic>time-of-flight positron emission tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Diana</creatorcontrib><creatorcontrib>Bark, Hyeon Sang</creatorcontrib><creatorcontrib>Kim, Yushin</creatorcontrib><creatorcontrib>Shin, Junho</creatorcontrib><creatorcontrib>Kim, Hyun Woo</creatorcontrib><creatorcontrib>Oang, Key Young</creatorcontrib><creatorcontrib>Jang, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Jeong, Young Uk</creatorcontrib><creatorcontrib>Baek, In Hyung</creatorcontrib><creatorcontrib>Levin, Craig S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Diana</au><au>Bark, Hyeon Sang</au><au>Kim, Yushin</au><au>Shin, Junho</au><au>Kim, Hyun Woo</au><au>Oang, Key Young</au><au>Jang, Kyu-Ha</au><au>Lee, Kitae</au><au>Jeong, Young Uk</au><au>Baek, In Hyung</au><au>Levin, Craig S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-11-29</date><risdate>2024</risdate><volume>69</volume><issue>23</issue><spage>235010</spage><pages>235010-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Achieving ultra-precise temporal resolution in ionizing radiation detection is essential, particularly in positron emission tomography, where precise timing enhances signal-to-noise ratios and may enable reconstruction-less imaging. A promising approach involves utilizing ultrafast modulation of the complex refractive index, where sending probe pulses to the detection crystals will result in changes in picoseconds (ps), and thus a sub-10 ps coincidence time resolution can be realized. Towards this goal, here, we aim to first measure the ps changes in probe pulses using an ionizing radiation source with high time resolution We used relativistic, ultrafast electrons to induce complex refractive index and use probe pulses in the near-infrared (800 nm) and terahertz (THz, 300 m) regimes to test the hypothesized wavelength-squared increase in absorption coefficient in the Drude free-carrier absorption model. We measured BGO, ZnSe, BaF , ZnS, PBG, and PWO with 1 mm thickness to control the deposited energy of the 3 MeV electrons, simulating ionization energy of the 511 keV photons. Both with the 800 nm and THz probe pulses, transmission decreased across most samples, indicating the free carrier absorption, with an induced signal change of 11% in BaF , but without the predicted Drude modulation increase. To understand this discrepancy, we simulated ionization tracks and examined the geometry of the free carrier distribution, attributing the mismatch in THz modulations to the sub-wavelength diameter of trajectories, despite the lengths reaching 500 m to 1 mm. Additionally, thin samples truncated the final segments of the ionization tracks, and the measured initial segments have larger inter-inelastic collision distances due to lower stopping power (d /d ) for high-energy electrons, exacerbating diffraction-limited resolution. Our work offers insights into ultrafast radiation detection using complex refractive index modulation and highlights critical considerations in sample preparation, probe wavelength, and probe-charge carrier coupling scenarios.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39419084</pmid><doi>10.1088/1361-6560/ad8832</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1139-0118</orcidid><orcidid>https://orcid.org/0000-0002-4054-4155</orcidid><orcidid>https://orcid.org/0000-0002-5823-0699</orcidid><orcidid>https://orcid.org/0000-0002-4575-5074</orcidid><orcidid>https://orcid.org/0000-0002-1259-1982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-11, Vol.69 (23), p.235010
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_ad8832
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects coincidence time resolution
Electrons
Infrared Rays
modulation in complex refractive index
radiation detection
Refractometry
Terahertz Radiation
Time Factors
time-of-flight positron emission tomography
title Study of modulation in complex refractive indices induced by ultrafast relativistic electrons using infrared and THz probe pulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20modulation%20in%20complex%20refractive%20indices%20induced%20by%20ultrafast%20relativistic%20electrons%20using%20infrared%20and%20THz%20probe%20pulses&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Jeong,%20Diana&rft.date=2024-11-29&rft.volume=69&rft.issue=23&rft.spage=235010&rft.pages=235010-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad8832&rft_dat=%3Cproquest_cross%3E3117993760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-f0c8c58c5623a15b8b7690db870615721a93dfb9479e8e05b1bca12e9ea39c9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117993760&rft_id=info:pmid/39419084&rfr_iscdi=true