Loading…
Definition of the profile gain factor and its application for internal transport barrier analysis in torus plasmas
In this paper, a new criterion for the internal transport barrier (ITB) formation is proposed by defining a unique scalar parameter, the profile gain factor. The profile gain factor shows degree of the confinement improvement with respect to an arbitrary reference temperature profile in the L-mode....
Saved in:
Published in: | Plasma physics and controlled fusion 2019-06, Vol.61 (8), p.85005 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new criterion for the internal transport barrier (ITB) formation is proposed by defining a unique scalar parameter, the profile gain factor. The profile gain factor shows degree of the confinement improvement with respect to an arbitrary reference temperature profile in the L-mode. As the reference L-mode profile for the large helical device (LHD), the edge ion temperature profile data is extrapolated to the core by the L-mode profile function, which is characterized by the thermal diffusion coefficient being proportional to the local ion temperature. The profile gain factor is defined as the ratio of the ion stored energy experimentally measured to that evaluated from the reference L-mode profile. The proposed method is applied to the LHD experimental data, and its capability for quantification of the ITB strength is demonstrated. |
---|---|
ISSN: | 0741-3335 1361-6587 |
DOI: | 10.1088/1361-6587/ab221c |