Loading…

Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications

Grad’s method is used on the linearized Boltzmann collision operator to derive the most general expressions for the collision coefficients for a multi-component, multi-temperature plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum of pure coefficients of te...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2021-06, Vol.63 (6), p.64005
Main Authors: Raghunathan, M, Marandet, Y, Bufferand, H, Ciraolo, G, Ghendrih, Ph, Tamain, P, Serre, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33
cites cdi_FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33
container_end_page
container_issue 6
container_start_page 64005
container_title Plasma physics and controlled fusion
container_volume 63
creator Raghunathan, M
Marandet, Y
Bufferand, H
Ciraolo, G
Ghendrih, Ph
Tamain, P
Serre, E
description Grad’s method is used on the linearized Boltzmann collision operator to derive the most general expressions for the collision coefficients for a multi-component, multi-temperature plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum of pure coefficients of temperature and mass ratios multiplied by the cross-section dependent Chapman–Cowling integrals. These collisional coefficients are compared to previously obtained coefficients by Zhdanov (2002 Transport Processes in Multicomponent Plasma (London: Taylor and Francis)) for 13 N -moment multi-temperature scheme. First, the differences in coefficients are compared directly, and then the differences in first approximation to viscosity and friction force are compared. For the 13 N -moment multi-temperature coefficients, it is found that they behave reasonably similarly for small temperature differences, but display substantial differences in the coefficients when the temperature differences are high, both for the coefficients and for viscosity and friction force values. Furthermore, the obtained coefficients are compared to the 21 N -moment single-temperature approximation provided by Zhdanov et al , and it is seen that the differences are higher than the 13 N -moment multi-temperature coefficients, and have substantial differences even in the vicinity of equal temperatures, especially for the viscosity and friction force calculations.
doi_str_mv 10.1088/1361-6587/abf670
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6587_abf670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03384547v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33</originalsourceid><addsrcrecordid>eNp1kUFr2zAYhsXYYFm7-466DuLmU2RL8jErW1sI9NKexRf7c6ogW0ayB-lf2p-cnZT01JPg5X2eD_Qy9kPAjQBjVkIqkanC6BXuGqXhE1tcos9sAToXmZSy-Mq-pXQAEMKs1YL9u6OOInr3SjWvgvcuudCh540fXc2HFwrxyJsQeTv6wWVVaPvQUTcs34KB2n4SDGMk3ntMLfIxuW4_o9y7jjCe3L-CH15b7Lr3KzycyMk9-1MVsacsNA33eKS4onpPHPveuwqHqZ6u2ZcGfaLvb-8Ve_7z--n2Pts-3j3cbrZZJQs1ZCavtDRaA8LOKJmXiOtcKQmgEEwlBIi1gp0iY3StSwIqKS-lqktd5KKR8or9PHtf0Ns-uhbj0QZ09n6ztXMGUpq8yPVfMXXh3K1iSClScwEE2HkYO69g5xXseZgJWZ4RF3p7CGOcvjt9XP8PBV-SnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications</title><source>Institute of Physics</source><creator>Raghunathan, M ; Marandet, Y ; Bufferand, H ; Ciraolo, G ; Ghendrih, Ph ; Tamain, P ; Serre, E</creator><creatorcontrib>Raghunathan, M ; Marandet, Y ; Bufferand, H ; Ciraolo, G ; Ghendrih, Ph ; Tamain, P ; Serre, E</creatorcontrib><description>Grad’s method is used on the linearized Boltzmann collision operator to derive the most general expressions for the collision coefficients for a multi-component, multi-temperature plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum of pure coefficients of temperature and mass ratios multiplied by the cross-section dependent Chapman–Cowling integrals. These collisional coefficients are compared to previously obtained coefficients by Zhdanov (2002 Transport Processes in Multicomponent Plasma (London: Taylor and Francis)) for 13 N -moment multi-temperature scheme. First, the differences in coefficients are compared directly, and then the differences in first approximation to viscosity and friction force are compared. For the 13 N -moment multi-temperature coefficients, it is found that they behave reasonably similarly for small temperature differences, but display substantial differences in the coefficients when the temperature differences are high, both for the coefficients and for viscosity and friction force values. Furthermore, the obtained coefficients are compared to the 21 N -moment single-temperature approximation provided by Zhdanov et al , and it is seen that the differences are higher than the 13 N -moment multi-temperature coefficients, and have substantial differences even in the vicinity of equal temperatures, especially for the viscosity and friction force calculations.</description><identifier>ISSN: 0741-3335</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/abf670</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Boltzmann collision operator ; collisional fluid modelling ; collisions ; Computer Science ; Engineering Sciences ; kinetic theory ; Modeling and Simulation ; Physics ; plasma impurities ; Plasmas ; Reactive fluid environment ; SOL/edge ; Zhdanov closure</subject><ispartof>Plasma physics and controlled fusion, 2021-06, Vol.63 (6), p.64005</ispartof><rights>2021 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33</citedby><cites>FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33</cites><orcidid>0000-0003-2772-786X ; 0000-0002-3174-7727 ; 0000-0002-1505-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03384547$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raghunathan, M</creatorcontrib><creatorcontrib>Marandet, Y</creatorcontrib><creatorcontrib>Bufferand, H</creatorcontrib><creatorcontrib>Ciraolo, G</creatorcontrib><creatorcontrib>Ghendrih, Ph</creatorcontrib><creatorcontrib>Tamain, P</creatorcontrib><creatorcontrib>Serre, E</creatorcontrib><title>Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>Grad’s method is used on the linearized Boltzmann collision operator to derive the most general expressions for the collision coefficients for a multi-component, multi-temperature plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum of pure coefficients of temperature and mass ratios multiplied by the cross-section dependent Chapman–Cowling integrals. These collisional coefficients are compared to previously obtained coefficients by Zhdanov (2002 Transport Processes in Multicomponent Plasma (London: Taylor and Francis)) for 13 N -moment multi-temperature scheme. First, the differences in coefficients are compared directly, and then the differences in first approximation to viscosity and friction force are compared. For the 13 N -moment multi-temperature coefficients, it is found that they behave reasonably similarly for small temperature differences, but display substantial differences in the coefficients when the temperature differences are high, both for the coefficients and for viscosity and friction force values. Furthermore, the obtained coefficients are compared to the 21 N -moment single-temperature approximation provided by Zhdanov et al , and it is seen that the differences are higher than the 13 N -moment multi-temperature coefficients, and have substantial differences even in the vicinity of equal temperatures, especially for the viscosity and friction force calculations.</description><subject>Boltzmann collision operator</subject><subject>collisional fluid modelling</subject><subject>collisions</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>kinetic theory</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><subject>plasma impurities</subject><subject>Plasmas</subject><subject>Reactive fluid environment</subject><subject>SOL/edge</subject><subject>Zhdanov closure</subject><issn>0741-3335</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr2zAYhsXYYFm7-466DuLmU2RL8jErW1sI9NKexRf7c6ogW0ayB-lf2p-cnZT01JPg5X2eD_Qy9kPAjQBjVkIqkanC6BXuGqXhE1tcos9sAToXmZSy-Mq-pXQAEMKs1YL9u6OOInr3SjWvgvcuudCh540fXc2HFwrxyJsQeTv6wWVVaPvQUTcs34KB2n4SDGMk3ntMLfIxuW4_o9y7jjCe3L-CH15b7Lr3KzycyMk9-1MVsacsNA33eKS4onpPHPveuwqHqZ6u2ZcGfaLvb-8Ve_7z--n2Pts-3j3cbrZZJQs1ZCavtDRaA8LOKJmXiOtcKQmgEEwlBIi1gp0iY3StSwIqKS-lqktd5KKR8or9PHtf0Ns-uhbj0QZ09n6ztXMGUpq8yPVfMXXh3K1iSClScwEE2HkYO69g5xXseZgJWZ4RF3p7CGOcvjt9XP8PBV-SnQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Raghunathan, M</creator><creator>Marandet, Y</creator><creator>Bufferand, H</creator><creator>Ciraolo, G</creator><creator>Ghendrih, Ph</creator><creator>Tamain, P</creator><creator>Serre, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2772-786X</orcidid><orcidid>https://orcid.org/0000-0002-3174-7727</orcidid><orcidid>https://orcid.org/0000-0002-1505-6512</orcidid></search><sort><creationdate>20210601</creationdate><title>Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications</title><author>Raghunathan, M ; Marandet, Y ; Bufferand, H ; Ciraolo, G ; Ghendrih, Ph ; Tamain, P ; Serre, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boltzmann collision operator</topic><topic>collisional fluid modelling</topic><topic>collisions</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>kinetic theory</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><topic>plasma impurities</topic><topic>Plasmas</topic><topic>Reactive fluid environment</topic><topic>SOL/edge</topic><topic>Zhdanov closure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghunathan, M</creatorcontrib><creatorcontrib>Marandet, Y</creatorcontrib><creatorcontrib>Bufferand, H</creatorcontrib><creatorcontrib>Ciraolo, G</creatorcontrib><creatorcontrib>Ghendrih, Ph</creatorcontrib><creatorcontrib>Tamain, P</creatorcontrib><creatorcontrib>Serre, E</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghunathan, M</au><au>Marandet, Y</au><au>Bufferand, H</au><au>Ciraolo, G</au><au>Ghendrih, Ph</au><au>Tamain, P</au><au>Serre, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>63</volume><issue>6</issue><spage>64005</spage><pages>64005-</pages><issn>0741-3335</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>Grad’s method is used on the linearized Boltzmann collision operator to derive the most general expressions for the collision coefficients for a multi-component, multi-temperature plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum of pure coefficients of temperature and mass ratios multiplied by the cross-section dependent Chapman–Cowling integrals. These collisional coefficients are compared to previously obtained coefficients by Zhdanov (2002 Transport Processes in Multicomponent Plasma (London: Taylor and Francis)) for 13 N -moment multi-temperature scheme. First, the differences in coefficients are compared directly, and then the differences in first approximation to viscosity and friction force are compared. For the 13 N -moment multi-temperature coefficients, it is found that they behave reasonably similarly for small temperature differences, but display substantial differences in the coefficients when the temperature differences are high, both for the coefficients and for viscosity and friction force values. Furthermore, the obtained coefficients are compared to the 21 N -moment single-temperature approximation provided by Zhdanov et al , and it is seen that the differences are higher than the 13 N -moment multi-temperature coefficients, and have substantial differences even in the vicinity of equal temperatures, especially for the viscosity and friction force calculations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6587/abf670</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-2772-786X</orcidid><orcidid>https://orcid.org/0000-0002-3174-7727</orcidid><orcidid>https://orcid.org/0000-0002-1505-6512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2021-06, Vol.63 (6), p.64005
issn 0741-3335
1361-6587
language eng
recordid cdi_crossref_primary_10_1088_1361_6587_abf670
source Institute of Physics
subjects Boltzmann collision operator
collisional fluid modelling
collisions
Computer Science
Engineering Sciences
kinetic theory
Modeling and Simulation
Physics
plasma impurities
Plasmas
Reactive fluid environment
SOL/edge
Zhdanov closure
title Generalized collisional fluid theory for multi-component, multi-temperature plasma using the linearized Boltzmann collision operator for scrape-off layer/edge applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20collisional%20fluid%20theory%20for%20multi-component,%20multi-temperature%20plasma%20using%20the%20linearized%20Boltzmann%20collision%20operator%20for%20scrape-off%20layer/edge%20applications&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Raghunathan,%20M&rft.date=2021-06-01&rft.volume=63&rft.issue=6&rft.spage=64005&rft.pages=64005-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/abf670&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03384547v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-84c738770a0b86349aa24663006a08c1101260b6e887d79e0e9e4936d97541f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true