Loading…

Azimuthal ion drift of a gridded ion thruster

We report the experimental and simulated azimuthal ion velocities of a gridded ion thruster, which generates a roll torque around the thrust axis. Laser-induced fluorescence spectroscopy was applied to two microwave ion thrusters with opposite magnetic polarities. A comparison of the measured result...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2018-10, Vol.27 (10), p.105006
Main Authors: Yamashita, Yusuke, Tsukizaki, Ryudo, Yamamoto, Yuta, Koda, Daiki, Nishiyama, Kazutaka, Kuninaka, Hitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53
cites cdi_FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53
container_end_page
container_issue 10
container_start_page 105006
container_title Plasma sources science & technology
container_volume 27
creator Yamashita, Yusuke
Tsukizaki, Ryudo
Yamamoto, Yuta
Koda, Daiki
Nishiyama, Kazutaka
Kuninaka, Hitoshi
description We report the experimental and simulated azimuthal ion velocities of a gridded ion thruster, which generates a roll torque around the thrust axis. Laser-induced fluorescence spectroscopy was applied to two microwave ion thrusters with opposite magnetic polarities. A comparison of the measured results revealed a net misalignment of the grid optics and showed that the ions are continuously accelerated from inside the discharge chamber towards a direction downstream of the grid optics. To investigate the effect of the electromagnetic field, the authors conducted a two-dimensional particle-in-cell Monte Carlo collision (2D-PIC-MCC) numerical simulation. The numerical simulation agrees with the measurements and reveals that the ions are azimuthally accelerated by a gradient B drift, curvature drift, E × B drift and the Lorentz force. The reproduced roll torque is 3.1 2.3 Nm and arises due to the mechanical tolerance of the grid optics. The roll torque shows good agreement with the result observed in the space operation. Therefore, the roll torque can be predicted by using our experiment and simulation.
doi_str_mv 10.1088/1361-6595/aae29b
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6595_aae29b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstaae29b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKt7l7MVjM17kmUpvqDgRtchk-TalLYzJDML_fV2HHElri4czne4H0LXlNxRovWCckWxkkYunIvMNCdo9hudohkximPCJDtHF6VsCaFUs3qG8PIz7Yd-43ZVag9VyAn6qoXKVe85hRDDd9xv8lD6mC_RGbhdiVc_d47eHu5fV094_fL4vFqusRdM9LjRUeoGYgQpjOAglYfodai9MQGIF7VpaqCsVkJIJSiBEKP0sfHU8QCSzxGZdn1uS8kRbJfT3uUPS4kdde3oZkc3O-kekdsJSW1nt-2QD8cH_6vf_FHvSuktqydMEqJsF4B_AeynZQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Azimuthal ion drift of a gridded ion thruster</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yamashita, Yusuke ; Tsukizaki, Ryudo ; Yamamoto, Yuta ; Koda, Daiki ; Nishiyama, Kazutaka ; Kuninaka, Hitoshi</creator><creatorcontrib>Yamashita, Yusuke ; Tsukizaki, Ryudo ; Yamamoto, Yuta ; Koda, Daiki ; Nishiyama, Kazutaka ; Kuninaka, Hitoshi</creatorcontrib><description>We report the experimental and simulated azimuthal ion velocities of a gridded ion thruster, which generates a roll torque around the thrust axis. Laser-induced fluorescence spectroscopy was applied to two microwave ion thrusters with opposite magnetic polarities. A comparison of the measured results revealed a net misalignment of the grid optics and showed that the ions are continuously accelerated from inside the discharge chamber towards a direction downstream of the grid optics. To investigate the effect of the electromagnetic field, the authors conducted a two-dimensional particle-in-cell Monte Carlo collision (2D-PIC-MCC) numerical simulation. The numerical simulation agrees with the measurements and reveals that the ions are azimuthally accelerated by a gradient B drift, curvature drift, E × B drift and the Lorentz force. The reproduced roll torque is 3.1 2.3 Nm and arises due to the mechanical tolerance of the grid optics. The roll torque shows good agreement with the result observed in the space operation. Therefore, the roll torque can be predicted by using our experiment and simulation.</description><identifier>ISSN: 0963-0252</identifier><identifier>ISSN: 1361-6595</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/aae29b</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>azimuthal velocity ; electron cyclotron resonance ; ion drift ; ion thruster ; laser-induced fluorescence spectroscopy ; PIC-MCC simulation ; roll torque</subject><ispartof>Plasma sources science &amp; technology, 2018-10, Vol.27 (10), p.105006</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53</citedby><cites>FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53</cites><orcidid>0000-0001-6447-5062 ; 0000-0002-6265-1672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamashita, Yusuke</creatorcontrib><creatorcontrib>Tsukizaki, Ryudo</creatorcontrib><creatorcontrib>Yamamoto, Yuta</creatorcontrib><creatorcontrib>Koda, Daiki</creatorcontrib><creatorcontrib>Nishiyama, Kazutaka</creatorcontrib><creatorcontrib>Kuninaka, Hitoshi</creatorcontrib><title>Azimuthal ion drift of a gridded ion thruster</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>We report the experimental and simulated azimuthal ion velocities of a gridded ion thruster, which generates a roll torque around the thrust axis. Laser-induced fluorescence spectroscopy was applied to two microwave ion thrusters with opposite magnetic polarities. A comparison of the measured results revealed a net misalignment of the grid optics and showed that the ions are continuously accelerated from inside the discharge chamber towards a direction downstream of the grid optics. To investigate the effect of the electromagnetic field, the authors conducted a two-dimensional particle-in-cell Monte Carlo collision (2D-PIC-MCC) numerical simulation. The numerical simulation agrees with the measurements and reveals that the ions are azimuthally accelerated by a gradient B drift, curvature drift, E × B drift and the Lorentz force. The reproduced roll torque is 3.1 2.3 Nm and arises due to the mechanical tolerance of the grid optics. The roll torque shows good agreement with the result observed in the space operation. Therefore, the roll torque can be predicted by using our experiment and simulation.</description><subject>azimuthal velocity</subject><subject>electron cyclotron resonance</subject><subject>ion drift</subject><subject>ion thruster</subject><subject>laser-induced fluorescence spectroscopy</subject><subject>PIC-MCC simulation</subject><subject>roll torque</subject><issn>0963-0252</issn><issn>1361-6595</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKt7l7MVjM17kmUpvqDgRtchk-TalLYzJDML_fV2HHElri4czne4H0LXlNxRovWCckWxkkYunIvMNCdo9hudohkximPCJDtHF6VsCaFUs3qG8PIz7Yd-43ZVag9VyAn6qoXKVe85hRDDd9xv8lD6mC_RGbhdiVc_d47eHu5fV094_fL4vFqusRdM9LjRUeoGYgQpjOAglYfodai9MQGIF7VpaqCsVkJIJSiBEKP0sfHU8QCSzxGZdn1uS8kRbJfT3uUPS4kdde3oZkc3O-kekdsJSW1nt-2QD8cH_6vf_FHvSuktqydMEqJsF4B_AeynZQ8</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Yamashita, Yusuke</creator><creator>Tsukizaki, Ryudo</creator><creator>Yamamoto, Yuta</creator><creator>Koda, Daiki</creator><creator>Nishiyama, Kazutaka</creator><creator>Kuninaka, Hitoshi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6447-5062</orcidid><orcidid>https://orcid.org/0000-0002-6265-1672</orcidid></search><sort><creationdate>20181016</creationdate><title>Azimuthal ion drift of a gridded ion thruster</title><author>Yamashita, Yusuke ; Tsukizaki, Ryudo ; Yamamoto, Yuta ; Koda, Daiki ; Nishiyama, Kazutaka ; Kuninaka, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>azimuthal velocity</topic><topic>electron cyclotron resonance</topic><topic>ion drift</topic><topic>ion thruster</topic><topic>laser-induced fluorescence spectroscopy</topic><topic>PIC-MCC simulation</topic><topic>roll torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Yusuke</creatorcontrib><creatorcontrib>Tsukizaki, Ryudo</creatorcontrib><creatorcontrib>Yamamoto, Yuta</creatorcontrib><creatorcontrib>Koda, Daiki</creatorcontrib><creatorcontrib>Nishiyama, Kazutaka</creatorcontrib><creatorcontrib>Kuninaka, Hitoshi</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Yusuke</au><au>Tsukizaki, Ryudo</au><au>Yamamoto, Yuta</au><au>Koda, Daiki</au><au>Nishiyama, Kazutaka</au><au>Kuninaka, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azimuthal ion drift of a gridded ion thruster</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2018-10-16</date><risdate>2018</risdate><volume>27</volume><issue>10</issue><spage>105006</spage><pages>105006-</pages><issn>0963-0252</issn><issn>1361-6595</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>We report the experimental and simulated azimuthal ion velocities of a gridded ion thruster, which generates a roll torque around the thrust axis. Laser-induced fluorescence spectroscopy was applied to two microwave ion thrusters with opposite magnetic polarities. A comparison of the measured results revealed a net misalignment of the grid optics and showed that the ions are continuously accelerated from inside the discharge chamber towards a direction downstream of the grid optics. To investigate the effect of the electromagnetic field, the authors conducted a two-dimensional particle-in-cell Monte Carlo collision (2D-PIC-MCC) numerical simulation. The numerical simulation agrees with the measurements and reveals that the ions are azimuthally accelerated by a gradient B drift, curvature drift, E × B drift and the Lorentz force. The reproduced roll torque is 3.1 2.3 Nm and arises due to the mechanical tolerance of the grid optics. The roll torque shows good agreement with the result observed in the space operation. Therefore, the roll torque can be predicted by using our experiment and simulation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/aae29b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6447-5062</orcidid><orcidid>https://orcid.org/0000-0002-6265-1672</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2018-10, Vol.27 (10), p.105006
issn 0963-0252
1361-6595
1361-6595
language eng
recordid cdi_crossref_primary_10_1088_1361_6595_aae29b
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects azimuthal velocity
electron cyclotron resonance
ion drift
ion thruster
laser-induced fluorescence spectroscopy
PIC-MCC simulation
roll torque
title Azimuthal ion drift of a gridded ion thruster
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azimuthal%20ion%20drift%20of%20a%20gridded%20ion%20thruster&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Yamashita,%20Yusuke&rft.date=2018-10-16&rft.volume=27&rft.issue=10&rft.spage=105006&rft.pages=105006-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/aae29b&rft_dat=%3Ciop_cross%3Epsstaae29b%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-b8e58bfeef54943f56cfec8d7c99df0c479b7f12764456410fdee5cebc1a3df53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true