Loading…

Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects

Two modes of the atmospheric-pressure plasma discharge, distinguished by the dominant O 3 and NO x species are studied numerically and experimentally. To investigate the mode transition mechanisms, here we develop a global chemical kinetics model for the atmospheric-pressure dielectric barrier disch...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2023-02, Vol.32 (2), p.25005
Main Authors: Liu, Kun, Geng, Wenqiang, Zhou, Xiongfeng, Duan, Qingsong, Zheng, Zhenfeng, Ostrikov, Kostya (Ken)
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3
cites cdi_FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3
container_end_page
container_issue 2
container_start_page 25005
container_title Plasma sources science & technology
container_volume 32
creator Liu, Kun
Geng, Wenqiang
Zhou, Xiongfeng
Duan, Qingsong
Zheng, Zhenfeng
Ostrikov, Kostya (Ken)
description Two modes of the atmospheric-pressure plasma discharge, distinguished by the dominant O 3 and NO x species are studied numerically and experimentally. To investigate the mode transition mechanisms, here we develop a global chemical kinetics model for the atmospheric-pressure dielectric barrier discharge involving 63 species and 750 reactions. Validated by the experimental results, the model accurately describes the mode transition. The N, O, O 2 (a), and O 2 (b) are the essential transient intermediate species for the O 3 and NO x production and loss reactions. The individual and synergistic effects of the specific discharge energy and the gas temperature on the species density and the relative contributions of the dominant reactions are quantified under the increasing discharge voltage conditions. The modeling results indicate that the gas temperature and specific discharge energy both contributed to the discharge mode transition, while the decisive factors affecting the change of the O 3 and NO x density are different in the respective modes. These insights contribute to diverse plasma applications in biomedicine, agriculture, food, and other fields where selective and controlled production of O 3 and NO x species is the key for the desired plasma performance.
doi_str_mv 10.1088/1361-6595/acb814
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6595_acb814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6595_acb814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3</originalsourceid><addsrcrecordid>eNo9kMtOw0AMRUcIJEphz9I_EDozeXTCDlW8pIpuuo-ciScd1Dw0ToF-Eb9JQhErS_b1sXWEuFXyTkljFirOVJSlebpAWxqVnInZf-tczGSexZHUqb4UV8zvUipl9HImvrcBW_aD71poyO6w9dwwlDR8ErXAtCc7-A-CDcSAbQVvG_iCmloKeFrqKmLwLeDQdNzvKHgb9YGYD4Gg3yM3yPdQke0O_d63NXBP1jtvofI8Hgw1wYSrj7_8GhkGavqJPxHIufEDvhYXDvdMN391LrZPj9vVS7TePL-uHtaRNSaJMsTU5ajdMiulMxlWulIqK01GuEwc6tLp3Jp4nMbaqTE5ukqMc0YpneYungt5wtrQMQdyRR98g-FYKFlMnotJajFJLU6e4x8P4XYT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Liu, Kun ; Geng, Wenqiang ; Zhou, Xiongfeng ; Duan, Qingsong ; Zheng, Zhenfeng ; Ostrikov, Kostya (Ken)</creator><creatorcontrib>Liu, Kun ; Geng, Wenqiang ; Zhou, Xiongfeng ; Duan, Qingsong ; Zheng, Zhenfeng ; Ostrikov, Kostya (Ken)</creatorcontrib><description>Two modes of the atmospheric-pressure plasma discharge, distinguished by the dominant O 3 and NO x species are studied numerically and experimentally. To investigate the mode transition mechanisms, here we develop a global chemical kinetics model for the atmospheric-pressure dielectric barrier discharge involving 63 species and 750 reactions. Validated by the experimental results, the model accurately describes the mode transition. The N, O, O 2 (a), and O 2 (b) are the essential transient intermediate species for the O 3 and NO x production and loss reactions. The individual and synergistic effects of the specific discharge energy and the gas temperature on the species density and the relative contributions of the dominant reactions are quantified under the increasing discharge voltage conditions. The modeling results indicate that the gas temperature and specific discharge energy both contributed to the discharge mode transition, while the decisive factors affecting the change of the O 3 and NO x density are different in the respective modes. These insights contribute to diverse plasma applications in biomedicine, agriculture, food, and other fields where selective and controlled production of O 3 and NO x species is the key for the desired plasma performance.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/acb814</identifier><language>eng</language><ispartof>Plasma sources science &amp; technology, 2023-02, Vol.32 (2), p.25005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3</citedby><cites>FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3</cites><orcidid>0000-0001-8672-9297 ; 0000-0001-7821-6205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Geng, Wenqiang</creatorcontrib><creatorcontrib>Zhou, Xiongfeng</creatorcontrib><creatorcontrib>Duan, Qingsong</creatorcontrib><creatorcontrib>Zheng, Zhenfeng</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><title>Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects</title><title>Plasma sources science &amp; technology</title><description>Two modes of the atmospheric-pressure plasma discharge, distinguished by the dominant O 3 and NO x species are studied numerically and experimentally. To investigate the mode transition mechanisms, here we develop a global chemical kinetics model for the atmospheric-pressure dielectric barrier discharge involving 63 species and 750 reactions. Validated by the experimental results, the model accurately describes the mode transition. The N, O, O 2 (a), and O 2 (b) are the essential transient intermediate species for the O 3 and NO x production and loss reactions. The individual and synergistic effects of the specific discharge energy and the gas temperature on the species density and the relative contributions of the dominant reactions are quantified under the increasing discharge voltage conditions. The modeling results indicate that the gas temperature and specific discharge energy both contributed to the discharge mode transition, while the decisive factors affecting the change of the O 3 and NO x density are different in the respective modes. These insights contribute to diverse plasma applications in biomedicine, agriculture, food, and other fields where selective and controlled production of O 3 and NO x species is the key for the desired plasma performance.</description><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOw0AMRUcIJEphz9I_EDozeXTCDlW8pIpuuo-ciScd1Dw0ToF-Eb9JQhErS_b1sXWEuFXyTkljFirOVJSlebpAWxqVnInZf-tczGSexZHUqb4UV8zvUipl9HImvrcBW_aD71poyO6w9dwwlDR8ErXAtCc7-A-CDcSAbQVvG_iCmloKeFrqKmLwLeDQdNzvKHgb9YGYD4Gg3yM3yPdQke0O_d63NXBP1jtvofI8Hgw1wYSrj7_8GhkGavqJPxHIufEDvhYXDvdMN391LrZPj9vVS7TePL-uHtaRNSaJMsTU5ajdMiulMxlWulIqK01GuEwc6tLp3Jp4nMbaqTE5ukqMc0YpneYungt5wtrQMQdyRR98g-FYKFlMnotJajFJLU6e4x8P4XYT</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Liu, Kun</creator><creator>Geng, Wenqiang</creator><creator>Zhou, Xiongfeng</creator><creator>Duan, Qingsong</creator><creator>Zheng, Zhenfeng</creator><creator>Ostrikov, Kostya (Ken)</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid><orcidid>https://orcid.org/0000-0001-7821-6205</orcidid></search><sort><creationdate>20230201</creationdate><title>Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects</title><author>Liu, Kun ; Geng, Wenqiang ; Zhou, Xiongfeng ; Duan, Qingsong ; Zheng, Zhenfeng ; Ostrikov, Kostya (Ken)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Geng, Wenqiang</creatorcontrib><creatorcontrib>Zhou, Xiongfeng</creatorcontrib><creatorcontrib>Duan, Qingsong</creatorcontrib><creatorcontrib>Zheng, Zhenfeng</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kun</au><au>Geng, Wenqiang</au><au>Zhou, Xiongfeng</au><au>Duan, Qingsong</au><au>Zheng, Zhenfeng</au><au>Ostrikov, Kostya (Ken)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects</atitle><jtitle>Plasma sources science &amp; technology</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>25005</spage><pages>25005-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><abstract>Two modes of the atmospheric-pressure plasma discharge, distinguished by the dominant O 3 and NO x species are studied numerically and experimentally. To investigate the mode transition mechanisms, here we develop a global chemical kinetics model for the atmospheric-pressure dielectric barrier discharge involving 63 species and 750 reactions. Validated by the experimental results, the model accurately describes the mode transition. The N, O, O 2 (a), and O 2 (b) are the essential transient intermediate species for the O 3 and NO x production and loss reactions. The individual and synergistic effects of the specific discharge energy and the gas temperature on the species density and the relative contributions of the dominant reactions are quantified under the increasing discharge voltage conditions. The modeling results indicate that the gas temperature and specific discharge energy both contributed to the discharge mode transition, while the decisive factors affecting the change of the O 3 and NO x density are different in the respective modes. These insights contribute to diverse plasma applications in biomedicine, agriculture, food, and other fields where selective and controlled production of O 3 and NO x species is the key for the desired plasma performance.</abstract><doi>10.1088/1361-6595/acb814</doi><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid><orcidid>https://orcid.org/0000-0001-7821-6205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2023-02, Vol.32 (2), p.25005
issn 0963-0252
1361-6595
language eng
recordid cdi_crossref_primary_10_1088_1361_6595_acb814
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Transition mechanisms between selective O 3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20mechanisms%20between%20selective%20O%203%20and%20NO%20x%20generation%20modes%20in%20atmospheric-pressure%20plasmas:%20decoupling%20specific%20discharge%20energy%20and%20gas%20temperature%20effects&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Liu,%20Kun&rft.date=2023-02-01&rft.volume=32&rft.issue=2&rft.spage=25005&rft.pages=25005-&rft.issn=0963-0252&rft.eissn=1361-6595&rft_id=info:doi/10.1088/1361-6595/acb814&rft_dat=%3Ccrossref%3E10_1088_1361_6595_acb814%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c884-6aa5f9a2f76b0f86ad2d116b86ea74fa2bf29c836b032f19a2cb848ff811259f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true