Loading…

Mapping of n-GaN Schottky contacts formed on facet-growth substrates using near-ultraviolet scanning internal photoemission microscopy

Scanning internal photoemission microscopy (SIPM) is applied to characterize Ni Schottky contacts formed on a thick low-carrier-density drift layer grown on facet-growth freestanding GaN substrate. Four variations of the Schottky contact dots are prepared, those formed in the c-plane growth region,...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor science and technology 2021-03, Vol.36 (3)
Main Authors: Shiojima, Kenji, Maeda, Masataka, Kurihara, Kaori
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scanning internal photoemission microscopy (SIPM) is applied to characterize Ni Schottky contacts formed on a thick low-carrier-density drift layer grown on facet-growth freestanding GaN substrate. Four variations of the Schottky contact dots are prepared, those formed in the c-plane growth region, in the facet growth region, in the region including the boundary between the c-plane and facet regions, and in a region including a large-dislocation-density area at the center of the facet growth region. For all the samples, the SIPM photoyield (Y) maps obtained using visible lasers showed that the Y and Schottky barrier height were sufficiently uniform over the contacts, resulting in uniform metal-semiconductor interfaces. The growth mode boundary and the large-dislocation area, as a vague pattern consisting of large- and small-Y regions of about 100 μm, are clearly observed in the Y map using a near-ultraviolet laser. Device breakdown under high voltage occurred in the large-dislocation-density region with large Y. The results indicate that this method can predict device failure in conjunction with crystal defects and the electrical characteristics of Schottky contacts.
ISSN:0268-1242
1361-6641
DOI:10.1088/1361-6641/abdd09