Loading…

Programming the deformation of a temperature-driven bilayer structure in 4D printing

4D printing deforms a 2D foldable structure to another shape evolve over time by using heterogeneous material. The deformation of the 2D foldable structure is stimulated by actuators that are fabricated by shape memory materials or bilayer structures. Therefore, the deformation programming method of...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2019-10, Vol.28 (10), p.105031
Main Authors: Zeng, Siyuan, Gao, Yicong, Feng, Yixiong, Zheng, Hao, Qiu, Hao, Tan, Jianrong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3
cites cdi_FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3
container_end_page
container_issue 10
container_start_page 105031
container_title Smart materials and structures
container_volume 28
creator Zeng, Siyuan
Gao, Yicong
Feng, Yixiong
Zheng, Hao
Qiu, Hao
Tan, Jianrong
description 4D printing deforms a 2D foldable structure to another shape evolve over time by using heterogeneous material. The deformation of the 2D foldable structure is stimulated by actuators that are fabricated by shape memory materials or bilayer structures. Therefore, the deformation programming method of actuators is a critical technology in 4D printing. This paper proposes a method for programming the deformation of a temperature-driven bilayer structure actuator in 4D printing. The thermo-mechanical mechanism of the bilayer structure actuator is analyzed and three kinds of deformation behavior are modeled. Then a constitutive model with five main deformation programming parameters including the line width, the print height, the print temperature, the filled form, and the stimulation temperature is fitted by the orthogonal experiment and response surface method. The permanent deformation of the bilayer structure actuator results from the programmed parameters and time evolution of the 3D printed structure upon heating. A typical temperature shape memory material polylactic acid is used as a case study to illustrate the methodology and a desired programmed deformation is achieved.
doi_str_mv 10.1088/1361-665X/ab39c9
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_ab39c9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsab39c9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAcxYMoOKd3jzl6sC5pfjQ5ynQqDPQwwVtI2mRmrE1JMmH_vS0VT-LpC-_73uPxAeAaozuMhFhgwnHBOftYaENkLU_A7Fc6BTMkOS1wVfJzcJHSDiGMBcEzsHmLYRt12_puC_OnhY11IbY6-9DB4KCG2ba9jTofoi2a6L9sB43f66ONMOV4qMcH9B2kD7CPvstD0SU4c3qf7NXPnYP31eNm-VysX59elvfroqakyoWpjJDGUeK4E5xJzRnRDaPUyhJzSiSSlBmJKsSQ1ZWwoqyR5tQZ7BATlswBmnrrGFKK1qlhQavjUWGkRipqRKBGBGqiMkRup4gPvdqFQ-yGgf_Zb_6wpzapUkwphghWfePIN6GAcec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Programming the deformation of a temperature-driven bilayer structure in 4D printing</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zeng, Siyuan ; Gao, Yicong ; Feng, Yixiong ; Zheng, Hao ; Qiu, Hao ; Tan, Jianrong</creator><creatorcontrib>Zeng, Siyuan ; Gao, Yicong ; Feng, Yixiong ; Zheng, Hao ; Qiu, Hao ; Tan, Jianrong</creatorcontrib><description>4D printing deforms a 2D foldable structure to another shape evolve over time by using heterogeneous material. The deformation of the 2D foldable structure is stimulated by actuators that are fabricated by shape memory materials or bilayer structures. Therefore, the deformation programming method of actuators is a critical technology in 4D printing. This paper proposes a method for programming the deformation of a temperature-driven bilayer structure actuator in 4D printing. The thermo-mechanical mechanism of the bilayer structure actuator is analyzed and three kinds of deformation behavior are modeled. Then a constitutive model with five main deformation programming parameters including the line width, the print height, the print temperature, the filled form, and the stimulation temperature is fitted by the orthogonal experiment and response surface method. The permanent deformation of the bilayer structure actuator results from the programmed parameters and time evolution of the 3D printed structure upon heating. A typical temperature shape memory material polylactic acid is used as a case study to illustrate the methodology and a desired programmed deformation is achieved.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ab39c9</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>4D printing ; deformation programming ; shape-memory material ; temperature-driven</subject><ispartof>Smart materials and structures, 2019-10, Vol.28 (10), p.105031</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3</citedby><cites>FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3</cites><orcidid>0000-0002-1987-0431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zeng, Siyuan</creatorcontrib><creatorcontrib>Gao, Yicong</creatorcontrib><creatorcontrib>Feng, Yixiong</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Qiu, Hao</creatorcontrib><creatorcontrib>Tan, Jianrong</creatorcontrib><title>Programming the deformation of a temperature-driven bilayer structure in 4D printing</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>4D printing deforms a 2D foldable structure to another shape evolve over time by using heterogeneous material. The deformation of the 2D foldable structure is stimulated by actuators that are fabricated by shape memory materials or bilayer structures. Therefore, the deformation programming method of actuators is a critical technology in 4D printing. This paper proposes a method for programming the deformation of a temperature-driven bilayer structure actuator in 4D printing. The thermo-mechanical mechanism of the bilayer structure actuator is analyzed and three kinds of deformation behavior are modeled. Then a constitutive model with five main deformation programming parameters including the line width, the print height, the print temperature, the filled form, and the stimulation temperature is fitted by the orthogonal experiment and response surface method. The permanent deformation of the bilayer structure actuator results from the programmed parameters and time evolution of the 3D printed structure upon heating. A typical temperature shape memory material polylactic acid is used as a case study to illustrate the methodology and a desired programmed deformation is achieved.</description><subject>4D printing</subject><subject>deformation programming</subject><subject>shape-memory material</subject><subject>temperature-driven</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAcxYMoOKd3jzl6sC5pfjQ5ynQqDPQwwVtI2mRmrE1JMmH_vS0VT-LpC-_73uPxAeAaozuMhFhgwnHBOftYaENkLU_A7Fc6BTMkOS1wVfJzcJHSDiGMBcEzsHmLYRt12_puC_OnhY11IbY6-9DB4KCG2ba9jTofoi2a6L9sB43f66ONMOV4qMcH9B2kD7CPvstD0SU4c3qf7NXPnYP31eNm-VysX59elvfroqakyoWpjJDGUeK4E5xJzRnRDaPUyhJzSiSSlBmJKsSQ1ZWwoqyR5tQZ7BATlswBmnrrGFKK1qlhQavjUWGkRipqRKBGBGqiMkRup4gPvdqFQ-yGgf_Zb_6wpzapUkwphghWfePIN6GAcec</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zeng, Siyuan</creator><creator>Gao, Yicong</creator><creator>Feng, Yixiong</creator><creator>Zheng, Hao</creator><creator>Qiu, Hao</creator><creator>Tan, Jianrong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1987-0431</orcidid></search><sort><creationdate>20191001</creationdate><title>Programming the deformation of a temperature-driven bilayer structure in 4D printing</title><author>Zeng, Siyuan ; Gao, Yicong ; Feng, Yixiong ; Zheng, Hao ; Qiu, Hao ; Tan, Jianrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4D printing</topic><topic>deformation programming</topic><topic>shape-memory material</topic><topic>temperature-driven</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Siyuan</creatorcontrib><creatorcontrib>Gao, Yicong</creatorcontrib><creatorcontrib>Feng, Yixiong</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Qiu, Hao</creatorcontrib><creatorcontrib>Tan, Jianrong</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Siyuan</au><au>Gao, Yicong</au><au>Feng, Yixiong</au><au>Zheng, Hao</au><au>Qiu, Hao</au><au>Tan, Jianrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming the deformation of a temperature-driven bilayer structure in 4D printing</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>28</volume><issue>10</issue><spage>105031</spage><pages>105031-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>4D printing deforms a 2D foldable structure to another shape evolve over time by using heterogeneous material. The deformation of the 2D foldable structure is stimulated by actuators that are fabricated by shape memory materials or bilayer structures. Therefore, the deformation programming method of actuators is a critical technology in 4D printing. This paper proposes a method for programming the deformation of a temperature-driven bilayer structure actuator in 4D printing. The thermo-mechanical mechanism of the bilayer structure actuator is analyzed and three kinds of deformation behavior are modeled. Then a constitutive model with five main deformation programming parameters including the line width, the print height, the print temperature, the filled form, and the stimulation temperature is fitted by the orthogonal experiment and response surface method. The permanent deformation of the bilayer structure actuator results from the programmed parameters and time evolution of the 3D printed structure upon heating. A typical temperature shape memory material polylactic acid is used as a case study to illustrate the methodology and a desired programmed deformation is achieved.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ab39c9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1987-0431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2019-10, Vol.28 (10), p.105031
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_ab39c9
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 4D printing
deformation programming
shape-memory material
temperature-driven
title Programming the deformation of a temperature-driven bilayer structure in 4D printing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20the%20deformation%20of%20a%20temperature-driven%20bilayer%20structure%20in%204D%20printing&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Zeng,%20Siyuan&rft.date=2019-10-01&rft.volume=28&rft.issue=10&rft.spage=105031&rft.pages=105031-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ab39c9&rft_dat=%3Ciop_cross%3Esmsab39c9%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-b7b89bf43f6f8659a653ad544e92164390945b907050ea78e82c0a64fb1f058e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true