Loading…
Steerable miniature ambulatory robot based on piezoelectric actuation with a caltrop-like structure
Conventional piezoelectric actuators or robots have advantages of miniature sizes, fast responses, good accelerations, and long stroke, but they are difficult to recover their movement after a sudden rollover or overturn. In order to achieve a consecutive motion in an abrupt environment, a steerable...
Saved in:
Published in: | Smart materials and structures 2020-01, Vol.29 (1), p.15011 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional piezoelectric actuators or robots have advantages of miniature sizes, fast responses, good accelerations, and long stroke, but they are difficult to recover their movement after a sudden rollover or overturn. In order to achieve a consecutive motion in an abrupt environment, a steerable miniature ambulatory robot (SMAR) with a caltrop-like structure is proposed based on piezoelectric actuation. A kinematic model of the SMAR is developed to design the structure of the robot and to analyze the working principle. A preliminary prototype is fabricated to verify the working principle that it has a capacity of 2D motion, with the maximum speed of 320 mm s−1 and the minimum turning radius of 40 mm when the drive voltage is 200 V (peak-peak value). In addition, a control strategy designed in a LabVIEW system which can refine the eigenvalues from complex motion trajectories, is presented for robust steering to a target in a short time, especially after a sudden rollover. Therefore, this SMAR can realize arbitrary and fast movements in a 2D task space, which is also appropriate for a dynamic environment, such as in a moving or rolling channel, and it can also step down with a smooth movement due to its special caltrop-like structure. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/1361-665X/ab526c |