Loading…
Design and analysis of three-dimensional chiral metamaterials for enhanced torsional compliance
Three-dimensional (3D) chiral structures are a subset of mechanical metamaterials known for their distinctive deformation characteristics, including the presence of auxetic and compression–torsion coupling behaviors. In this study, a novel 3D chiral metamaterial with high torsional compliance was de...
Saved in:
Published in: | Smart materials and structures 2024-04, Vol.33 (4), p.45009 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-dimensional (3D) chiral structures are a subset of mechanical metamaterials known for their distinctive deformation characteristics, including the presence of auxetic and compression–torsion coupling behaviors. In this study, a novel 3D chiral metamaterial with high torsional compliance was designed. A gammadion-shaped chiral cell comprising inclined ligaments was incorporated into the chiral structure for enhanced torsional compliance. Finite element analyses (FEAs) were performed to demonstrate that the proposed chiral structure outperformed other chiral structures in terms of torsional compliance. Furthermore, FEAs were performed to investigate the influence of the slenderness ratio and ligament diameter of the chiral structure, on attaining a maximum torsional compliance of 18.6° N
−1
. These 3D chiral structures were fabricated using additive manufacturing techniques, and experimental validations were performed to observe and confirm the compression–torsion coupling behaviors. To further expand the utility of these 3D chiral structures, statistical analyses were conducted to establish regression models for effective density and torsional compliance, as functions of the slenderness ratio and ligament diameter. These regression models can enhance the applicability of the proposed chiral structures in the development of versatile functional components that require compression–torsion coupling behaviors. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/1361-665X/ad2f0a |