Loading…
A compact high frequency voltage amplifier for superconductor–semiconductor logic interface
The many advantages of cryogenically cooled single-flux quantum (SFQ) circuits imply that the high speed and low voltage output signals must be amplified and interfaced with standard electronics. State-of-the-art low-noise and wide-band amplifiers are required to interface with room temperature elec...
Saved in:
Published in: | Superconductor science & technology 2021-04, Vol.34 (4), p.45013 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The many advantages of cryogenically cooled single-flux quantum (SFQ) circuits imply that the high speed and low voltage output signals must be amplified and interfaced with standard electronics. State-of-the-art low-noise and wide-band amplifiers are required to interface with room temperature electronics. One solution is to place preamplifiers at the cryogenic stage, which requires specific semiconductor design and fabrication. However, a more viable and energy-efficient approach is to integrate the pulsed logic circuit output stages with on-chip superconductor preamplifiers. We designed, fabricated, and tested an on-chip compact voltage multiplier integrated with the output stage of SFQ circuits to increase the voltage amplitude of SFQ pulses. The circuit is designed with the same technology as the logic circuit hence its noise level is lower, and it works at higher frequencies compared to complementary metal-oxide semi-conductor amplifiers and due to quantized nature of it there is no added noise. The fabricated circuit has a compact size of 160
µ
m × 320
µ
m and provides about 10 dB gain with measured 600
µ
V output voltage at frequencies up to ∼25 GHz in simulations. By stacking more levels, over 20 dB gain at circuit level is achievable as shown in simulations. Moreover the gain of the superconductor voltage amplifier is quantized and programmable. |
---|---|
ISSN: | 0953-2048 1361-6668 |
DOI: | 10.1088/1361-6668/abdedb |